4.過⊙O外一點(diǎn)P作⊙O的兩條割線PAB,PMN,其中PMN過圓心O,過P作再作⊙O的切線PT,切點(diǎn)為T.已知PM=MO=ON=1.
(Ⅰ)求切線PT的長;
(Ⅱ)求$\frac{AM•BM}{AN•BN}$時(shí)值.

分析 (Ⅰ)利用切割線定理求切線PT的長;
(Ⅱ)證明△PAN∽△PBM,△PAM∽△PBN,即可求$\frac{AM•BM}{AN•BN}$時(shí)值.

解答 解:(Ⅰ)∵PM=MO=ON=1,
∴PT2=PM•PN=3,
∴PT=$\sqrt{3}$;
(Ⅱ)∵∠ABM=∠ANM,∠BPM=∠NPA,
∴△PAN∽△PBM,
∴$\frac{BM}{AN}=\frac{PB}{PN}$①,
∵∠PAM=∠PNB,∠PMA=∠PBN,
∴△PAM∽△PBN,
∴$\frac{AM}{BN}$=$\frac{PA}{PN}$②
由①②,可知$\frac{AM•BM}{AN•BN}$=$\frac{PA•BP}{P{N}^{2}}$=$\frac{PM•PN}{P{N}^{2}}$=$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查切割線定理,考查三角形相似的判定與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知α是第三象限角,化簡f(x)=$\frac{sin(α-\frac{π}{2})cos(\frac{3}{2}π+α)tan(π-α)}{tan(-α-π)sin(-π-α)}$=-cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖1,AB為圓O的直徑,D為圓周上異于A,B的點(diǎn),PB垂直于圓O所在的平面,BE⊥PA,BF⊥PD,垂足分別為E,F(xiàn).已知AB=BP=2,直線PD與平面ABD所成角的正切值為$\sqrt{2}$.
(I)求證:BF⊥平面PAD;
(II)求三棱錐E-ABD的體積;
(III)在圖2中,作出平面BEF與平面ABD的交線,并求平面BEF與平面ABD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,△ABC中,以BC為直徑的⊙O分別交AC,AB于點(diǎn)E,F(xiàn),BE,CF交于點(diǎn)H.求證:
(Ⅰ)過C點(diǎn)平行于AH的直線是⊙O的切線;
(Ⅱ)BH•BE+CH•CF=BC2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ,θ∈[0,2π).
(1)求曲線C的直角坐標(biāo)方程;
(2)若點(diǎn)D在曲線C上,求它到直線l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=-3t+2}\end{array}\right.$(t為參數(shù),t∈R)的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.正四棱錐P-ABCD的側(cè)棱與底面邊長相等均為a,此四棱錐的高為$\frac{\sqrt{2}}{2}$a;側(cè)棱與底面所成的角$\frac{π}{4}$;側(cè)面與底面所成的角arctan$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=2x2-ax+lnx在其定義域上不單調(diào),則實(shí)數(shù)a的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a>b,c>d,則不等式一定成立的是( 。
A.a-c>b-dB.a+c>b+dC.ac>bdD.|a|>|b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知$\overrightarrow a$與$\overrightarrow b$的夾角為1200,且|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3.
(1)求$\overrightarrow a$•$\overrightarrow b$和|3$\overrightarrow a$+2$\overrightarrow b}$|;
(2)當(dāng)x為何值時(shí),x$\overrightarrow a$-$\overrightarrow b$與$\overrightarrow a$+3$\overrightarrow b$垂直?
(3)求$\overrightarrow a$與3$\overrightarrow a+2\overrightarrow b$的夾角.

查看答案和解析>>

同步練習(xí)冊(cè)答案