函數(shù)f(x)=
log2x                 x≥1
-x2+4ax-2a    x<1
,則“a=
1
2
”是“函數(shù)f(x)在R上遞增”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:當x≥1時,f(x)=log2x≥0,且單調(diào)遞增;當x<1時,f(x)=-x2+4ax-2a=-(x-2a)2+4a2-2a.要使此時f(x)單調(diào)遞增且f(x)<0,則2a≥1,f(1)=2a-1≤0,解出a即可判斷出.
解答: 解:當x≥1時,f(x)=log2x≥0,且單調(diào)遞增;
當x<1時,f(x)=-x2+4ax-2a=-(x-2a)2+4a2-2a.要使此時f(x)單調(diào)遞增且f(x)<0,則2a≥1,f(1)=2a-1≤0,解得a=
1
2

因此“a=
1
2
”是“函數(shù)f(x)在R上遞增”的充要條件.
故選:C.
點評:本題考查了對數(shù)函數(shù)、二次函數(shù)的單調(diào)性、充要條件的判定,考查了推理能力和計算能力,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

曲線y=lnx的一條切線與直線4x-y-8=0平行,則切點的坐標為(  )
A、(4,ln4)
B、(4,-8)
C、(
1
4
,ln
1
4
D、(
1
4
,7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式an=3n-16,則數(shù)列{an}的前n項和Sn取得最小值時n的值為(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=ex在點A(0,1)處的切線的傾斜角為( 。
A、
π
6
B、
π
3
C、
π
4
D、
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,真命題的是( 。
A、已知f(x)=sin2x+
2
sin2x
,則f(x)的最小值是2
2
B、已知數(shù)列{an}的通項公式為an=n+
2
n
,則{an}的最小項為2
2
C、已知實數(shù)x,y滿足x+y=2,則xy的最大值是1
D、已知實數(shù)x,y滿足xy=1,則x+y的最小值是2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某地區(qū)對用戶用電推出兩種收費辦法,供用戶選擇使用:一是按固定電價收。欢前捶謺r電價收取在固定電價的基礎(chǔ)上,用電高峰時段電價每千瓦時上浮0.03元;非用電高峰時段時段電價每千瓦時下浮0.25元.若一用戶某月用電高峰時段用電140千瓦時,非用電高峰時段用電60千瓦時,則相對于固定電價收費該月( 。
A、多付電費10.8元
B、少付電費10.8元
C、少付電費15元
D、多付電費4.2元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若凸k邊形的內(nèi)角和為f(k),則凸k+1邊形的內(nèi)角和f(k+1)(k≥3且k∈N*)等于( 。
A、f(k)+
π
2
B、f(k)+π
C、f(k)+
3
2
π
D、f(k)+2π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x,x≥0
-x
,x<0
,則“f(a)=4”是“a=2”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
5
5

(1)求cosα的值;
(2)求
cos(
π
2
+α)sin(-π-α)
cos(
11π
2
-α)sin(
2
+α)
的值.

查看答案和解析>>

同步練習冊答案