【題目】已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點,且與圓相切.

1)求的值;

2)動點在拋物線的準線上,動點上,若點處的切線軸于點,設(shè).求證點在定直線上,并求該定直線的方程.

【答案】1;(2)點在定直線上.

【解析】

1)設(shè)出直線的方程為,由直線和圓相切的條件:,解得;

2)設(shè)出,運用導(dǎo)數(shù)求得切線的斜率,求得為切點的切線方程,再由向量的坐標表示,可得在定直線上;

解:(1)依題意設(shè)直線的方程為,

由已知得:圓的圓心,半徑,

因為直線與圓相切,

所以圓心到直線的距離,

,解得(舍去).

所以;

2)依題意設(shè),由(1)知拋物線方程為,

所以,所以,設(shè),則以為切點的切線的斜率為,

所以切線的方程為

,,即軸于點坐標為,

所以, ,

,

設(shè)點坐標為,則,

所以點在定直線上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當時,討論極值點的個數(shù);

2)若函數(shù)有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為2,且過點.

1)求橢圓的方程;

2)已知是橢圓的內(nèi)接三角形,若坐標原點的重心,求點到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、“90從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中正確的是(

注:“901990年及以后出生的人,“801980-1989年之間出生的人,“801979年及以前出生的人.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中“90占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)“90“80

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)“90“80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:過橢圓上的一點(不與長軸的端點重合)與橢圓的兩個焦點確定的三角形稱為橢圓的焦點三角形;已知過橢圓上一點P(不與長軸的端點重合)的焦點三角形,且

1)求證:焦點三角形的面積為定值;

2)已知橢圓的一個焦點三角形為,;

,求點的橫坐標的范圍;

,過點的直線軸交于點,且,記,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),.

1)討論函數(shù)的單調(diào)性;

2)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當存在三個不同的零點時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)只能同時滿足下列三個條件中的兩個:函數(shù)的最大值為2;函數(shù)的圖象可由的圖象平移得到;函數(shù)圖象的相鄰兩條對稱軸之間的距離為.

1)請寫出這兩個條件序號,并求出的解析式;

2)求方程在區(qū)間上所有解的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在四面體中,、分別是的中點,、分別是上的動點,且相交于點.下列判斷中:

①直線經(jīng)過點;

;

、、、四點共面,且該平面把四面體的體積分為相等的兩部分.

所有正確的序號為

__________

查看答案和解析>>

同步練習(xí)冊答案