分析 (1)由橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,右焦點到直線x=$\frac{a^2}{c}$的距離為1,列出方程組,求出a,b,由此能求出橢圓的標準方程.
(2)當OP的斜率為0時,|OP|=$\sqrt{2}$,|OQ|=$\sqrt{2}$,$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=1;當OP的斜率不為0時,設(shè)直線OP的方程為y=kx,由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx}\end{array}\right.$,得(2k2+1)x2=2,由此利用直線與直線垂直、韋達定理,結(jié)合已知條件,求出$\frac{1}{{|OP{|^2}}}+\frac{1}{{|OQ{|^2}}}$=1.
解答 解:(1)∵橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,右焦點到直線x=$\frac{a^2}{c}$的距離為1,
∴$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{\frac{{a}^{2}}{c}-c=1}\end{array}\right.$,且a2=b2+c2,
解得a=$\sqrt{2}$,b=c=1.
∴橢圓的標準方程為$\frac{{x}^{2}}{2}+{y}^{2}=1$.
(2)設(shè)P(x1,y1),Q(${x}_{2},\sqrt{2}$),
由題意知OP的斜率存在,
當OP的斜率為0時,|OP|=$\sqrt{2}$,|OQ|=$\sqrt{2}$,
∴$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$=1,
當OP的斜率不為0時,設(shè)直線OP的方程為y=kx,
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx}\end{array}\right.$,得(2k2+1)x2=2,
解得${{x}_{1}}^{2}=\frac{2}{2{k}^{2}+1}$,∴${{y}_{1}}^{2}=\frac{2{k}^{2}}{2{k}^{2}+1}$,
∴|OP|2=${{x}_{1}}^{2}+{{y}_{1}}^{2}$=$\frac{2{k}^{2}+2}{2{k}^{2}+1}$,
∵OP⊥OQ,∴直線OQ的方程為y=-$\frac{1}{k}x$,
由$\left\{\begin{array}{l}{y=\sqrt{2}}\\{y=-\frac{1}{k}x}\end{array}\right.$,得${x}_{2}=-\sqrt{2}k$,
∴|OQ|2=${{x}_{2}}^{2}+(\sqrt{2})^{2}=2{k}^{2}+2$,
∴$\frac{1}{{|OP{|^2}}}+\frac{1}{{|OQ{|^2}}}$=$\frac{2{k}^{2}+1}{2{k}^{2}+2}+\frac{1}{2{k}^{2}+2}$=1.
綜上,$\frac{1}{{|OP{|^2}}}+\frac{1}{{|OQ{|^2}}}$=1.
點評 本題考查橢圓方程的求法,考查線段平方的倒數(shù)和的求法,考查推理論證能力、運算求解能力、空間想象能力,考查等價轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $-\frac{5}{8}$ | C. | $-\frac{3}{8}$ | D. | $-\frac{15}{32}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -32 | B. | -16 | C. | -10 | D. | -6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com