【題目】計算下列幾個式子,結(jié)果為 的序號是 ①tan25°+tan35° tan25°tan35°,
,
③2(sin35°cos25°+sin55°cos65°),

【答案】①②③
【解析】解:∵tan60°=tan(25°+35°)= = ∴tan25°+tan35°= (1﹣tan25°tan35°)
∴tan25°+tan35° tan25°tan35°= ,①符合
═tan(45°+15°)=tan60°= ,②符合
2(sin35°cos25°+sin55°cos65°)=2(sin35°cos25°+cos35°sin25°)=2sin60°= ,③符合
= tan = ,④不符合
所以答案是:①②③
【考點(diǎn)精析】通過靈活運(yùn)用兩角和與差的正切公式,掌握兩角和與差的正切公式:即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若函數(shù)的圖象恰好相切與點(diǎn),求實(shí)數(shù) 的值;

(2)當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍;

(3)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=asinx﹣bcosx(a、b為常數(shù),a≠0,x∈R)在x= 處取得最小值,則函數(shù)y=f( ﹣x)是(
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn) 對稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn) 對稱
D.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2alnx.
(1)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為1,求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù) 在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0 ) 經(jīng)過點(diǎn) P(1, ),離心率 e=
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)過點(diǎn)E(0,﹣2 ) 的直線l 與C相交于P,Q兩點(diǎn),求△OPQ 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知cosα= ,cos(α﹣β)= ,且0<β<α< ,
(1)求tan2α的值;
(2)求β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《數(shù)學(xué)九章》中對已知三角形三邊長求三角形的面積的求法填補(bǔ)了我國傳統(tǒng)數(shù)學(xué)的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,且2asinB﹣ bcosA=0.
(1)求cosA;
(2)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將A、B兩枚骰子各拋擲一次,觀察向上的點(diǎn)數(shù),問:
(1)共有多少種不同的結(jié)果?
(2)兩枚骰子點(diǎn)數(shù)之和是3的倍數(shù)的結(jié)果有多少種?
(3)兩枚骰子點(diǎn)數(shù)之和是3的倍數(shù)的概率為多少?

查看答案和解析>>

同步練習(xí)冊答案