10.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2c-a=2bcosA.
(1)求角B的大。
(2)若a=2,b=$\sqrt{7}$,求c的長.

分析 (1)根據(jù)正弦定理和兩角和的正弦公式即可求出,
(2)利用余弦定理即可求出

解答 解:(1)∵2c-a=2bcosA,
由正弦定理可得2sinC-sinA=2sinBcosA,
∵sinC=sin(A+B)=sinAcosB+cosAsinB,
∴2sinAcosB+2cosAsinB-sinA=2sinBcosA
∴2sinAcosB=sinA
∵sinA≠0,
∴cosB=$\frac{1}{2}$,
∴B=$\frac{π}{3}$,
(2)由余弦定理可得b2=a2+c2-2accosB
∴7=4+c2-2c,
即c2-2c-3=0,
解得c=3或c=-1(舍去),
∴c=3.

點評 本題考查了正弦定理余弦定理,兩角和的正弦公式和三角形的內(nèi)角和定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給定命題p:“若a2017>-1,則a>-1”;命題q:“?x∈R,x2tanx2>0”,則下列命題中,真命題的是( 。
A.p∨qB.(¬p)∨qC.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE與∠AEC的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.Sn等差數(shù)列{an}的前n項和,a1>0,當且僅當n=10時Sn最大,則$\frac{{S}_{12}}{{a}_{12}}$的取值范圍為(-54,-21).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.AQI是表示空氣質(zhì)量的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,當AQI指數(shù)值不大于100時稱空氣質(zhì)量為“優(yōu)良”.如圖是某地4月1日到12日AQI指數(shù)值的統(tǒng)計數(shù)據(jù),圖中點A表示4月1日的AQI指數(shù)值為201,則下列敘述不正確的是(  )
A.這12天中有6天空氣質(zhì)量為“優(yōu)良”B.這12天中空氣質(zhì)量最好的是4月9日
C.這12天的AQI指數(shù)值的中位數(shù)是90D.從4日到9日,空氣質(zhì)量越來越好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)$\frac{1}{1-i}$+$\frac{1}{1+i}$=( 。
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合M={-2,2},N={x|x<0,或x>1},則下列結(jié)論正確的是(  )
A.N⊆MB.M⊆NC.M∩N=ND.M∩N={2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點在直線l:$\sqrt{3}$x-y-3=0上,且橢圓上任意兩個關(guān)于原點對稱的點與橢圓上任意一點的連線的斜率之積為-$\frac{1}{4}$.
(1)求橢圓C的方程;
(2)若直線t經(jīng)過點P(1,0),且與橢圓C有兩個交點A,B,是否存在直線l0:x=x0(其中x0>2)使得A,B到l0的距離dA,dB滿足$\frac{d_A}{d_B}=\frac{{|{PA}|}}{{|{PB}|}}$恒成立?若存在,求出x0的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在射擊訓(xùn)練中,某戰(zhàn)士射擊了兩次,設(shè)命題p是“第一次射擊擊中目標”,命題q是“第二次射擊擊中目標”,則命題“兩次射擊中至少有一次沒有擊中目標“為真命題的充要條件是(  )
A.(¬p)∨(¬q)為真命題B.p∨(¬q)為真命題C.(¬p)∧(¬q)為真命題D.p∨q為真命題

查看答案和解析>>

同步練習(xí)冊答案