15.復(fù)數(shù)$\frac{1}{1-i}$+$\frac{1}{1+i}$=(  )
A.iB.-iC.-1D.1

分析 根據(jù)運算法則計算即可.

解答 解:$\frac{1}{1-i}$+$\frac{1}{1+i}$=$\frac{1+i+1-i}{(1+i)(1-i)}$=$\frac{2}{2}$=1,
故選:D.

點評 本題考查了復(fù)數(shù)的混合運算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=xex-m有2個零點都大于-2,則實數(shù)m的取值范圍是(-$\frac{1}{e}$,-$\frac{2}{{e}^{2}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)a>0,b>0,若$\sqrt{2}$是2a與2b的等比中項,求a2+2b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),直線l:y=2x-2,若直線l平行于雙曲線C的一條漸近線且經(jīng)過C的一個頂點,則雙曲線C的焦點到漸近線的距離為(  )
A.1B.2C.$\sqrt{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2c-a=2bcosA.
(1)求角B的大。
(2)若a=2,b=$\sqrt{7}$,求c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在我國古代著名的數(shù)學(xué)專著《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增一十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復(fù)還迎駑馬,二馬相逢.問:幾日相逢?( 。
A.8日B.9日C.12日D.16日

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知實數(shù)a,b滿足2<a<b<3,下列不等關(guān)系中一定成立的是(  )
A.a3+15b>b3+15aB.a3+15b<b3+15aC.b•2a>a•2bD.b•2a<a•2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)Sn,Tn分別是數(shù)列{an}和{bn}的前n項和,已知對于任意n∈N*,都有3an=2Sn+3,數(shù)列{bn}是等差數(shù)列,且T5=25,b10=19.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設(shè)cn=$\frac{{{a}_{n}b}_{n}}{n(n+1)}$,求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知不等式組$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{y+x-k≤0}\end{array}\right.$表示的平面區(qū)域的面積為$\frac{4}{3}$,則實數(shù)k=4.

查看答案和解析>>

同步練習(xí)冊答案