分析 (1)利用三角形中位線的來證明線面平行;
(2)在三棱錐中利用等體積法來求點到面的距離;
解答 解:(Ⅰ)證明:如右圖,連接BD交AC于點O,連接OE.
∵點O,E分別為BD,PD的中點,∴OE∥PB.
又PB?平面AEC,OE?平面AEC,∴PB∥平面AEC.
(Ⅱ)解:V三棱錐P-AEC=V三棱錐P-ACD-V三棱錐E-ACD=$\frac{1}{2}{V_{三棱錐P-ACD}}=\frac{1}{2}×\frac{1}{3}\;•\;{S_{△ACD}}\;•\;PA$=$\frac{1}{2}×\frac{1}{3}×\frac{1}{2}×2×2×sin\frac{π}{3}\;•\;PA=1$,∴$PA=2\sqrt{3}$.
設(shè)點A到平面PBC的距離為d,則V三棱錐A-PBC=V三棱錐P-ABC=V三棱錐P-ACD=2.
在Rt△PAB中,$PB=\sqrt{{2^2}+{{(2\sqrt{3})}^2}}=4$,
在Rt△PAC中,$PC=\sqrt{{2^2}+{{(2\sqrt{3})}^2}}=4$,
在△PBC中,${S_{△PBC}}=\frac{1}{2}×2×\sqrt{15}=\sqrt{15}$,∴$\frac{1}{3}\;•\;{S_{△PBC}}\;•\;d=2$,∴$\frac{1}{3}×\sqrt{15}d=2$,∴$d=\frac{2}{5}\sqrt{15}$,
∴點A到平面PBC的距離為$\frac{2}{5}\sqrt{15}$.
點評 本題主要考查了空間立體幾何體線面平行判定定理、等體積法的應(yīng)用,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | (-1,3) | C. | (3,1) | D. | (-3,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com