19.在平面直角坐標(biāo)系xOy中,已知直線l:x+y+a=0,與點(diǎn)A(0,2),若直線l上存在點(diǎn)M滿足|$\overrightarrow{MA}$|2+|$\overrightarrow{MO}$|2=7(O為原點(diǎn)),則實(shí)數(shù)a的取值范圍是(  )
A.(-$\sqrt{5}$-1,$\sqrt{5}$-1)B.[-$\sqrt{5}$-1,$\sqrt{5}$-1]C.(-2$\sqrt{2}$-1,2$\sqrt{2}$-1)D.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]

分析 由由|$\overrightarrow{MA}$|2+|$\overrightarrow{MO}$|2=7(O為原點(diǎn))得到x2+(y-1)2=$\frac{5}{2}$,根據(jù)圓心到直線的距離和半徑的關(guān)系即可求出a的范圍.

解答 解:設(shè)M(x,y)則由|$\overrightarrow{MA}$|2+|$\overrightarrow{MO}$|2=7(O為原點(diǎn))得到x2+(y-1)2=$\frac{5}{2}$,
∴直線x+y+a=0與x2+(y-1)2=$\frac{5}{2}$,有交點(diǎn).
∴$\frac{|a+1|}{\sqrt{2}}$≤$\frac{\sqrt{5}}{\sqrt{2}}$,
∴|a+1|≤$\sqrt{5}$,
∴-1-$\sqrt{5}$≤a≤-1+$\sqrt{5}$
故選:B.

點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意直線和圓的位置關(guān)系和圓心到直線的距離,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知雙曲線C:$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1,曲線f(x)=ex在點(diǎn)(0,1)處的切線方程為2mx-ny+1=0,則該雙曲線的漸近線方程為( 。
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,已知四邊形ABCD,ADEF均為平行四邊形,DE=BC=2,BD⊥CD,DE⊥平面ABCD.
(Ⅰ)求證:平面FAB⊥平面ABCD;
(Ⅱ)求四棱錐F-ABCD的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DE}$=$\overrightarrow9frdtf9$,$\overrightarrow{AE}$=$\overrightarrow{e}$,則$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$+$\overrightarrow3z3bpb9$-$\overrightarrow{e}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.新生兒Apgar評(píng)分,即阿氏評(píng)分是對(duì)新生兒出生后總體狀況的一個(gè)評(píng)估,主要從呼吸、心率、反射、膚色、肌張力這幾個(gè)方面評(píng)分,滿10分者為正常新生兒,評(píng)分7分以下的新生兒考慮患有輕度窒息,評(píng)分在4分以下考慮患有重度窒息,大部分新生兒的評(píng)分多在7-10分之間,某市級(jí)醫(yī)院婦產(chǎn)科對(duì)1月份出生的新生兒隨機(jī)抽取了16名,以如表格記錄了他們的評(píng)分情況.
 分?jǐn)?shù)段[0,7)[7,8)[8,9)[9,10)
 新生兒數(shù)
(1)現(xiàn)從16名新生兒中隨機(jī)抽取3名,求至多有1名評(píng)分不低于9分的概率;
(2)以這16名新生兒數(shù)據(jù)來(lái)估計(jì)本年度的總體數(shù)據(jù),若從本市本年度新生兒任選3名,記X表示抽到評(píng)分不低于9分的新生兒數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為e=$\frac{1}{2}$,P為橢圓C上一個(gè)動(dòng)點(diǎn),△PF1F2面積的最大值為$\sqrt{3}$,拋物線E:y2=2px(p>0)與橢圓C有共同的焦點(diǎn).
(1)求橢圓C和拋物線E的方程;
(2)設(shè)A,B是拋物線E上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且$\overrightarrow{OA}$•$\overrightarrow{OB}$=5.
①求證:直線AB必過(guò)定點(diǎn),并求出定點(diǎn)M的坐標(biāo);
②過(guò)點(diǎn)M作AB的垂線與拋物線交于G、H兩點(diǎn),求四邊形AGBH面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)a∈R,若對(duì)x≥0,均為(x+1)|x-a|≥ax-2成立,則實(shí)數(shù)a的最大值是( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)i是虛數(shù)單位,若復(fù)數(shù)z=2i-$\frac{5}{2-i}$,則|z|的值為( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓的方程為x2+y2-2ax-4ay+$\frac{9{a}^{2}}{2}$=0(a>0).
(1)求證:無(wú)論a取任何實(shí)數(shù)值,上述圓的圓心在同一直線上;
(2)試證明無(wú)論a取任何實(shí)數(shù)值,上述圓都有公切線,并求出公切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案