設(shè)是橢圓C:的左、右焦點(diǎn),過的直線與橢圓C相交于A、B兩點(diǎn),直線的傾斜角為,到直線的距離為。

(1)求橢圓C的焦距。

(2)如果,求橢圓C的方程。

 

【答案】

(1)由題設(shè)得:橢圓焦距   5分

(2)由題設(shè)及(1)知直線的方程為: ,  焦點(diǎn),

設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052517155703126475/SYS201205251718016093378290_DA.files/image007.png">,所以

 既 (1)

聯(lián)立方程組 消,并整理得

解得:,   把它們代入(1)式可得

所以。

故所求的橢圓方程為:

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,A,B是橢圓C:數(shù)學(xué)公式的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若數(shù)學(xué)公式,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點(diǎn),求e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省武漢市黃陂一中盤龍校區(qū)高二數(shù)學(xué)檢測試卷(六)(解析版) 題型:解答題

設(shè)F1,F(xiàn)2是橢圓C:的左、右焦點(diǎn),A、B分別為其左頂點(diǎn)和上頂點(diǎn),△BF1F2是面積為的正三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過右焦點(diǎn)F2的直線l交橢圓C于M,N兩點(diǎn),直線AM、AN分別與已知直線x=4交于點(diǎn)P和Q,試探究以線段PQ為直徑的圓與直線l的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省襄陽五中高三(上)周練數(shù)學(xué)試卷2(實(shí)驗(yàn)班)(8.13)(解析版) 題型:解答題

設(shè)F1,F(xiàn)2是橢圓C:的左、右焦點(diǎn),A、B分別為其左頂點(diǎn)和上頂點(diǎn),△BF1F2是面積為的正三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過右焦點(diǎn)F2的直線l交橢圓C于M,N兩點(diǎn),直線AM、AN分別與已知直線x=4交于點(diǎn)P和Q,試探究以線段PQ為直徑的圓與直線l的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《圓錐曲線與方程》2013年高三數(shù)學(xué)一輪復(fù)習(xí)單元訓(xùn)練(北京郵電大學(xué)附中)(解析版) 題型:解答題

如圖,A,B是橢圓C:的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點(diǎn),求e.

查看答案和解析>>

同步練習(xí)冊答案