若sin(
π
6
-θ)=
1
3
,則cos(
3
+2θ)的值為
 
考點(diǎn):兩角和與差的正弦函數(shù),兩角和與差的余弦函數(shù)
專題:計(jì)算題,三角函數(shù)的求值
分析:首先運(yùn)用
π
2
的誘導(dǎo)公式,再由二倍角的余弦公式:cos2α=2cos2α-1,即可得到.
解答: 解:由于sin(
π
6
-θ)=
1
3
,
則cos(
π
3
+θ)=sin(
π
6
-θ)=
1
3
,
則有cos(
3
+2θ)=cos2(
π
3
+θ)
=2cos2
π
3
+θ)-1=2×(
1
3
2-1=-
7
9

故答案為:-
7
9
點(diǎn)評(píng):本題考查誘導(dǎo)公式和二倍角的余弦公式及運(yùn)用,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|2x-4=0},集合N={x|x2-3x+m=0},
(1)當(dāng)m=2時(shí),求M∩N,M∪N;
(2)當(dāng)M∩N=∅時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式
ax
x+2
>1的解集為(-2,a),則實(shí)數(shù)a的值為( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-3x+m恰好有兩個(gè)零點(diǎn),則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A、B、C的對(duì)邊,且
cosB
cosC
=-
b
2a+c

(1)求角B的大小;
(2)若b=
3
,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三條直線a,b,c,兩個(gè)平面α,β.則下列命題中:
①a∥c,c∥b⇒a∥b;
②a∥β,b∥β⇒a∥b;
③a∥c,c∥α⇒a∥α;
④a∥β,a∥α⇒α∥β;
⑤a?α,b∥α,a∥b⇒a∥α,
正確的命題是( 。
A、①⑤B、①②C、②④D、③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=2,BC=1.5,∠ABC=120°(如圖),若將△ABC繞直線BC旋轉(zhuǎn)一周,則所形成的旋轉(zhuǎn)體的體積是( 。
A、
2
B、
2
C、
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義域D內(nèi)的某個(gè)區(qū)間I上的增函數(shù),且F(x)=
f(x)
x
在I上是減函數(shù),則稱y=f(x)是I上的“非完美增函數(shù)”,已知f(x)=lnx,g(x)=2x+
2
x
+alnx(a∈R)
(1)判斷f(x)在(0,1]上是否是“非完美增函數(shù)”;
(2)若g(x)是[1,+∞)上的“非完美增函數(shù)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(2,3)作直線l分別與x軸的正半軸和y軸的正半軸交于A(a,0),B(0,b)兩點(diǎn)
(1)求|PA|+|PB|的最小值.
(2)當(dāng)△AOB(O為原點(diǎn))的面積S最小時(shí),求直線l的方程,并求出S的最小值.
(3)當(dāng)|PA|•|PB|取得最小值時(shí),求直線?的方程.(提示:設(shè)∠OAB=θ,以θ為參變量求解,x+y-5=0)

查看答案和解析>>

同步練習(xí)冊(cè)答案