3.已知函數(shù)f(x)=$\sqrt{x}$;
(1)求函數(shù)f(x)圖象在x=1處切線l的方程;
(2)求由曲線y=$\sqrt{x}$,直線l及y軸圍成圖形的面積.

分析 (1)求出函數(shù)的導(dǎo)數(shù),計算f(1),f′(1),求出切線方程即可;(2)求出交點坐標,根據(jù)定積分計算即可.

解答 解:(1)f′(x)=$\frac{1}{2\sqrt{x}}$,f(1)=1,f′(1)=$\frac{1}{2}$,
故切線方程是:y-1=$\frac{1}{2}$(x-1),
即$y=\frac{1}{2}x+\frac{1}{2}$;
(2)由$\left\{\begin{array}{l}{y=\frac{1}{2}(x+1)}\\{y=\sqrt{x}}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
故直線l及y軸圍成圖形的面積:
S=${∫}_{0}^{1}$[($\frac{1}{2}$(x+1)-$\sqrt{x}$]dx
=$\frac{1}{2}$($\frac{1}{2}$x2+x+c)${|}_{0}^{1}$-$\frac{2}{3}$${x}^{\frac{3}{2}}$${|}_{0}^{1}$
=$\frac{1}{12}$.

點評 本題考查了切線方程問題,考查導(dǎo)數(shù)的應(yīng)用以及定積分問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項和為Sn,且關(guān)于x的方程x2-anx-an=0有一根為Sn-1.
(1)求出S1,S2,S3
(2)猜想{Sn}的通項公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列四種說法:
①函數(shù)$y=-\frac{1}{x}$在R上單調(diào)遞增;
②若函數(shù)y=x2+2ax+1在(-∞,-1]上單調(diào)遞減,則a≤1;
③若log0.7(2m)<log0.7(m-1),則m>-1;
④若f(x)是定義在R上的奇函數(shù),則f(1-x)+f(x-1)=0.
其中正確的序號是( 。
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為正方形,且PA=AD=2,E、F分別為棱AD、PC的中點.
(1)求異面直線EF和PB所成角的大;
(2)求證:平面PCE⊥平面PBC;
(3)求二面角E-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.一位網(wǎng)民在網(wǎng)上光顧某網(wǎng)店,經(jīng)過一番瀏覽后,對該店鋪中的A,B,C三種商品有購買意向.已知該網(wǎng)民購買A種商品的概率為$\frac{3}{4}$,購買B種商品的概率為$\frac{2}{3}$,購買C種商品的概率為$\frac{1}{2}$.假設(shè)該網(wǎng)民是否購買這三種商品相互獨立.
(1)求該網(wǎng)民三種商品都買的概率;
(2)求該網(wǎng)民至少購買2種商品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知角θ的頂點是直角坐標系的原點,始邊與x軸的非負半軸重合,角θ的終邊上有一點P(-5,12).
(1)求sinθ,cosθ的值;
(2)求$\frac{{2sin(\frac{π}{2}+θ)+sin(2017π-θ)}}{{2cos(\frac{π}{2}-θ)-cos(2017π+θ)}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x3-3x2-m存在2個零點,則這兩個零點的和為(  )
A.1B.3C.1或4D.1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知△ABC的三個頂點A(1,3),B(3,1),C(-1,0),則△ABC 的面積為5.

查看答案和解析>>

同步練習(xí)冊答案