分析 (1)求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義進(jìn)行求解,即可得到結(jié)論.
(2)先將過(guò)點(diǎn)A(1,b)可作曲線y=f(x)的三條切線轉(zhuǎn)化為:方程2x3-3x2+b+1=0(*)有三個(gè)不同實(shí)數(shù)根,記g(x)=2x3-3x2+b+1,g'(x)=6x2-6x=6x(x-1),下面利用導(dǎo)數(shù)研究函數(shù)g(x)的零點(diǎn),從而求得b的范圍.
解答 解:(1)f′(x)=3x2-1則f′(1)=3-1=2,.
曲線y=f(x)在點(diǎn)M(1,0)處的切線方程為:y=2(x-1)=2x-2
(2)設(shè)切點(diǎn)為(x0,y0),
則切線的斜率k=3x02-1=$\frac{{y}_{0}-b}{{x}_{0}-1}$=$\frac{{{x}_{0}}^{3}-{x}_{0}-b}{{x}_{0}-1}$,
即2x03-3x02+b+1=0,由條件知該方程有三個(gè)實(shí)根,
∴方程2x3-3x2+b+1=0(*)有三個(gè)不同實(shí)數(shù)根,
記g(x)=2x3-3x2+b+1,g'(x)=6x2-6x=6x(x-1)
令g'(x)=0,x=0或1,
則x,g'(x),g(x)的變化情況如下表
x | (-∞,0) | 0 | (0,1) | 1 | (1,+∞) |
g'(x) | + | 0 | - | 0 | + |
g(x) | 遞增 | 極大 | 遞減 | 極小 | 遞增 |
點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的應(yīng)用、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-2] | B. | (-∞,-2) | C. | (-2,+∞) | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 確定性關(guān)系 | B. | 相關(guān)關(guān)系 | C. | 函數(shù)關(guān)系 | D. | 無(wú)任何關(guān)系 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com