9.若不等式組$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{3x+y≤4}\end{array}\right.$,所表示的平面區(qū)域被直線y=kx+$\frac{4}{3}$分為面積相等的兩部分,則k的值是$\frac{7}{3}$.

分析 先根據(jù)約束條件,畫(huà)出可行域,求出可行域頂點(diǎn)的坐標(biāo),再利用幾何意義求面積即可

解答 解:不等式組$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{3x+y≤4}\end{array}\right.$,所表示的平面區(qū)域如圖示:
由圖可知,直線y=kx+$\frac{4}{3}$恒經(jīng)過(guò)點(diǎn)A(0,$\frac{4}{3}$),當(dāng)直線y=kx+$\frac{4}{3}$再經(jīng)過(guò)BC的中點(diǎn)D($\frac{1}{2}$,$\frac{5}{2}$)時(shí),平面區(qū)域被直線y=kx+$\frac{4}{3}$分為面積相等的兩部分,
當(dāng)x=$\frac{1}{2}$,y=$\frac{5}{2}$時(shí),代入直線y=kx+$\frac{4}{3}$的方程得:
k=$\frac{7}{3}$;
故答案為:$\frac{7}{3}$

點(diǎn)評(píng) 本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知F1、F2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),點(diǎn)P是該雙曲線上的任意一點(diǎn),若△PF1F2的內(nèi)切圓半徑為r,則r的取值范圍是(  )
A.(0,a)B.(0,b)C.(0,$\sqrt{{a}^{2}+^{2}}$)D.(0,$\sqrt{ab}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,e為雙曲線的離心率,P是雙曲線右支上的點(diǎn),△PF1F2的內(nèi)切圓的圓心為I,過(guò)F2作直線PI的垂線,垂足為B,則OB=a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的圖象如圖所示.
(1)根據(jù)圖象寫(xiě)出f(x)的解析式;
(2)A為銳角三角形的一個(gè)內(nèi)角,求f(A)的最大值,及當(dāng)f(A)取最大值時(shí)A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對(duì)應(yīng)值表:
x1234567
f(x)123.521.5-7.8211.57-53.7-126.7-129.6
那么函數(shù)f(x)在區(qū)間[1,6]上的零點(diǎn)至少有( 。
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.平面α的法向量$\overrightarrow{{n}_{1}}$=(x,1,-2),平面β的法向量$\overrightarrow{{n}_{2}}$=(-1,y,$\frac{1}{2}$),若α∥β,則x+y=$\frac{15}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某農(nóng)戶(hù)計(jì)劃種植黃瓜和冬瓜,種植面積不超過(guò)50畝,投入資金不超過(guò)54萬(wàn)元,假設(shè)種植黃瓜與冬瓜的產(chǎn)量、成本和售價(jià)如表:
年產(chǎn)量/畝年種植成本/畝每噸售價(jià)
黃瓜4噸1.2萬(wàn)元0.55萬(wàn)元
冬瓜6噸0.9萬(wàn)元0.3萬(wàn)元
為使一年的種植總利潤(rùn)(總利潤(rùn)=總銷(xiāo)售收入-總種植成本)最大,那么黃瓜與冬瓜的種植面積(單位:畝)分別為( 。
A.50,0B.30,20C.20,30D.0,50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知圓Q過(guò)三點(diǎn)A(1,0),B(3,0),C(0,1),則圓Q的標(biāo)準(zhǔn)方程為(x-2)2+(y-2)2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若數(shù)列{an}滿足a1=$\sqrt{3}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$([an]與{an}分別表示an的整數(shù)部分與小數(shù)部分),則a2016=( 。
A.3023+$\sqrt{3}$B.3023+$\frac{\sqrt{3}-1}{2}$C.3020+$\sqrt{3}$D.3020+$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案