分析 運用正弦定理可得△ABC的外接圓的直徑2r,再由球的半徑和球心到截面的距離、及截面圓的半徑構(gòu)成直角三角形,即可求得球的半徑,再由球的表面積公式計算即可得到.
解答 解:由于∠BAC=$\frac{2π}{3},BC=4\sqrt{3}$,
則△ABC的外接圓的直徑2r=$\frac{4\sqrt{3}}{\frac{\sqrt{3}}{2}}$=8,
即有r=4,
由于球心O到平面ABC的距離為3,
則由勾股定理可得,球的半徑R=5,
即有此球O的表面積為S=4πR2=4π×25=100π.
故答案為100π.
點評 本題考查球的表面積的求法,主要考查球的截面的性質(zhì):球的半徑和球心到截面的距離、及截面圓的半徑構(gòu)成直角三角形,同時考查正弦定理的運用:求三角形的外接圓的直徑,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{\sqrt{6}}{2}$ | C. | 4 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com