5.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極軸,x軸正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:ρ=$\frac{4cosθ}{si{n}^{2}θ}$,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}\right.$(t為參數(shù),0≤α<π).
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于兩點(diǎn)A,B,且線段AB的中點(diǎn)為M(2,2),求α.

分析 (1)利用極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化方法,求曲線C的直角坐標(biāo)方程;
(2)利用點(diǎn)差法,即可得出結(jié)論.

解答 解:(1)曲線C的極坐標(biāo)方程為:ρ=$\frac{4cosθ}{si{n}^{2}θ}$,直角坐標(biāo)方程為y2=4x;
(2)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}\right.$(t為參數(shù),0≤α<π),普通方程為y-2=tanα(x-2),
設(shè)A(x1,y1),B(x2,y2),代入拋物線方程,相減,可得tanα=1,∴α=45°.

點(diǎn)評(píng) 本題考查極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化,考查點(diǎn)差法的運(yùn)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,圓O(O為坐標(biāo)原點(diǎn))與離心率為$\frac{{\sqrt{3}}}{2}$的橢圓T:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)相交于點(diǎn)M(0,1). 
(I)求橢圓T與圓O的方程;
(Ⅱ)過點(diǎn)M引兩條互相垂直的兩直線l1、l2與兩曲線分別交于點(diǎn)A、C與點(diǎn)B、D(均不重合).
①P為橢圓上任一點(diǎn)(異于點(diǎn)M),記點(diǎn)P到兩直線的距離分別為d1、d2,求d12+d22的最大值;
②若3$\overrightarrow{MA}•\overrightarrow{MC}=4\overrightarrow{MB}•\overrightarrow{MD}$,求l1與l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用半徑為R的圓鐵皮剪一個(gè)內(nèi)接矩形,再以內(nèi)接矩形的兩邊分別作為圓柱的高與底面半徑,則圓柱的體積最大時(shí),該圓鐵皮面積與其內(nèi)接矩形的面積比為( 。
A.$\frac{3\sqrt{3}π}{8}$B.$\frac{3\sqrt{3}π}{7}$C.$\frac{3\sqrt{2}π}{8}$D.$\frac{3\sqrt{2}π}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.道路交通法規(guī)定:行人和車輛路過十字路口時(shí)必須按照交通信號(hào)指示通行,綠燈行,紅燈停,遇到黃燈時(shí),如已超過停車線須繼續(xù)行進(jìn).某十字路口的交通信號(hào)燈設(shè)置時(shí)間是:綠燈48秒.紅燈47秒,黃燈5秒.小張是個(gè)特別守法的人,只有遇到綠燈才通過,則他路過該路口的概率為( 。
A.0.95B.0.05C.0.47D.0.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且asinC=$\sqrt{3}$ccosA.
(1)求角A;
(2)若b=2,△ABC的面積為$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)與圓E:x2+(y-$\frac{3}{2}$)2=4相交于A,B兩點(diǎn),且|AB|=2$\sqrt{3}$,圓E交y軸負(fù)半軸于點(diǎn)D.
(Ⅰ)求橢圓Γ的離心率;
(Ⅱ)過點(diǎn)D的直線交橢圓Γ于M,N兩點(diǎn),點(diǎn)N與點(diǎn)N'關(guān)于y軸對(duì)稱,求證:直線MN'過定點(diǎn),并求該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.意大利著名數(shù)學(xué)家斐波那契在研究兔子的繁殖問題時(shí),發(fā)現(xiàn)有這樣的一列數(shù):1,1,2,3,5,8,…該數(shù)列的特點(diǎn)是:前兩個(gè)數(shù)均為1,從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和,人們把這樣的一列數(shù)所組成的數(shù)列{an}稱為“斐波那契數(shù)列”,則(a1a3-a22)+(a2a4-a32)+(a3a5-a42)+…+(a2015a2017-a20162)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合A={x|-1≤x≤2},B={x|x2-4x≤0},則A∪B={x|-1≤x≤4},A∩(∁RB)={x|-1≤x<0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=($\frac{1}{e}$)x+lnx,正數(shù)a,b,c滿足a<b<c,且f(a)•f(b)•f(c)>0,若實(shí)數(shù)x0是方程f(x)=0的一個(gè)解,那么下列不等式中不可能成立的是( 。
A.x0>cB.x0>bC.x0<cD.x0<a

查看答案和解析>>

同步練習(xí)冊(cè)答案