18.解下列不等式:
(1)8x-1≤16x2;
(2)x2-2ax-3a2<0(a<0).

分析 分別將兩個不等式分解變形,求不等式的解集.

解答 解:(1)8x-1≤16x2,變形為:(4x-1)2≥0,所以x∈R;
(2)x2-2ax-3a2<0(a<0),變形為(x-3a)(x+a)<0,所以不等式的解集為{x|3a<x<-a}.

點評 本題考查了一元二次不等式的解法;利用分解因式法將不等式變形求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某中學(xué)經(jīng)市政府批準(zhǔn)建分校,建分校工程分三期完成,確定由甲、乙兩家建筑公司承建此工程.規(guī)定每期工程僅由兩公司之一獨立承建,必須在前一期工程完工后再開始后一期工程.已知甲公司獲得第一期、第二期、第三期工程承包權(quán)的概率分別為$\frac{2}{3}$,$\frac{1}{2}$,$\frac{1}{4}$.
(Ⅰ)求甲公司至少獲得一期工程的概率;
(Ⅱ)求甲公司獲得工程期數(shù)比乙公司獲得工程期數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.從4名男同學(xué)、3名女同學(xué)中選3名同學(xué)組成一個小組,要求其中男、女同學(xué)都有,則共有30種不同的選法.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.用“分析法”證明:當(dāng)a>1,$\sqrt{a+1}$+$\sqrt{a-1}$<2$\sqrt{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知小矩形花壇ABCD中,AB=3m,AD=2m,現(xiàn)要將小矩形花壇建成大矩形花壇AMPN,使點B在AM上,點D在AN上,且對角線MN過點C.
(1)要使矩形AMPN的面積大于32m2,AN的長應(yīng)在什么范圍內(nèi)?
(2)M,N是否存在這樣的位置,使矩形AMPN的面積最?若存在,求出這個最小面積及相應(yīng)的AM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知長方體ABCD-A1B1C1D1中,E、M、N分別是BC、AE、CD1的中點,AD=AA1=a,AB=2a.求證:MN∥平面ADD1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.不等式$\frac{x+2}{x-1}$>0的解集為{x|x>1或x<-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,1)上為增函數(shù)的是( 。
A.f(x)=log2|x|B.y=3-xC.y=$\frac{1}{x}$D.y=-x2+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,-4).若$\overrightarrow{a}$與$\overrightarrow$( 。
A.垂直B.不垂直也不平行C.平行且同向D.平行且反向

查看答案和解析>>

同步練習(xí)冊答案