【題目】在某互聯(lián)網(wǎng)大會上,為了提升安全級別,將5名特警分配到3個重要路口執(zhí)勤,每個人只能選擇一個路口,每個路口最少1人,最多3人,且甲和乙不能安排在同一個路口,則不同的安排方法有(

A. 180 B. 150 C. 96 D. 114

【答案】D

【解析】分析:先不管條件甲和乙不能安排在同一個路口,先算出總共的安排方法,再減去甲和乙在同一個路口的情況即可.

詳解:先不管條件甲和乙不能安排在同一個路口,分兩種情況:

①三個路口人數(shù)情況3,1,1,共有種情況;

②三個路口人數(shù)情況2,2,1,共有種情況.

若甲乙在同一路口,則把甲乙看作一個整體,則相當于將4名特警分配到三個不同的路口,則有種,

故甲和乙不能安排在同一個路口,不同的安排方法有種.

故選:D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】中,給出如下命題:

所在平面內(nèi)一定點,且滿足,則的垂心;

所在平面內(nèi)一定點,動點滿足,,則動點一定過的重心;

內(nèi)一定點,且,則;

④若,則為等邊三角形,

其中正確的命題為_____(將所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若集合A{x|2x3},B{x|x+2)(xa)<0},則a1”AB____條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為,( 為參數(shù)),為曲線上的動點,動點滿足),點的軌跡為曲線.

(1)求曲線的方程,并說明是什么曲線;

(2)在以坐標原點為極點,以軸的正半軸為極軸的極坐標系中, 點的極坐標為,射線的異于極點的交點為,已知面積的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于命題:存在一個常數(shù),使得不等式對任意正數(shù),恒成立.

(1)試給出這個常數(shù)的值;

(2)在(1)所得結(jié)論的條件下證明命題;

(3)對于上述命題,某同學正確地猜想了命題:“存在一個常數(shù),使得不等式對任意正數(shù),恒成立.”觀察命題與命題的規(guī)律,請猜想與正數(shù),,相關(guān)的命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn}都是單調(diào)遞增數(shù)列,若將這兩個數(shù)列的項按由小到大的順序排成一列(相同的項視為一項),則得到一個新數(shù)列{cn}.
(1)設(shè)數(shù)列{an},{bn}分別為等差、等比數(shù)列,若a1=b1=1,a2=b3 , a6=b5 , 求c20;
(2)設(shè){an}的首項為1,各項為正整數(shù),bn=3n , 若新數(shù)列{cn}是等差數(shù)列,求數(shù)列{cn} 的前n項和Sn;
(3)設(shè)bn=qn1(q是不小于2的正整數(shù)),c1=b1 , 是否存在等差數(shù)列{an},使得對任意的n∈N* , 在bn與bn+1之間數(shù)列{an}的項數(shù)總是bn?若存在,請給出一個滿足題意的等差數(shù)列{an};若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖231所示.

圖231

將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨立.

(1)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個且另1天的日銷售量低于50個的概率;

(2)用X表示在未來3天里日銷售量不低于100個的天數(shù),求隨機變量X的分布列,期望E(X)及方差D(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,點為曲線上任意一點且滿足

1)求曲線的方程;

2)設(shè)曲線 軸交于兩點,點是曲線上異于的任意一點,直線分別交直線于點,試問軸上是否存在一個定點,使得?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究黏蟲孵化的平均溫度(單位:)與孵化天數(shù)之間的關(guān)系,某課外興趣小組通過試驗得到以下6組數(shù)據(jù):

他們分別用兩種模型①,②分別進行擬合,得到相應(yīng)的回歸方程并進行殘差分析,得到如圖所示的殘差圖:

經(jīng)過計算,,,.

(1)根據(jù)殘差圖,比較模型①、②的擬合效果,應(yīng)選擇哪個模型?(給出判斷即可,不必說明理由)

(2)殘差絕對值大于1的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立關(guān)于的線性回歸方程.(精確到).

參考公式:線性回歸方程中,.

查看答案和解析>>

同步練習冊答案