已知點(diǎn)A(1,0)到直線l的距離為2,點(diǎn)B(-4,0)到直線l的距離為3,則直線l的條數(shù)是( 。
分析:(1)當(dāng)直線l的方程為x=-1時(shí),滿足題意;
(2)當(dāng)直線的斜率存在時(shí),設(shè)方程為kx-y+b=0,由題意可得關(guān)于kb的兩個(gè)方程,聯(lián)立方程可判解得個(gè)數(shù),可得直線的條數(shù),綜合可得.
解答:解:(1)當(dāng)直線l的斜率不存在,且方程為x=-1時(shí),滿足題意;
(2)當(dāng)直線的斜率存在時(shí),設(shè)方程為y=kx+b,即kx-y+b=0,
則由點(diǎn)到直線的距離公式可得
|k+b|
k2+1
=2,①
|-4k+b|
k2+1
=3,②
并平方化簡(jiǎn)可得11k2-10kb-b2=0,
該方程可看作關(guān)于k的一元二次方程,可得△=(-10b)2-4×11×(-b2)=144b2≥0
當(dāng)b=0時(shí),代入①式化簡(jiǎn)可得3k2+4=0矛盾,故可得△=144b2>0,
∴方程11k2-10kb-b2=0有兩個(gè)不等實(shí)根,
再代入①式可得b有兩個(gè)值,故所對(duì)應(yīng)的直線有兩條,
綜合(1)(2)可得直線l的條數(shù)是3
故選C
點(diǎn)評(píng):本題考查點(diǎn)到直線的距離公式,涉及分類(lèi)討論的思想和一元二次方程根的判定,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A (1,0),P是曲線
x=2cosθ
y=1+cos2θ
(θ∈R)
上任一點(diǎn),設(shè)P到直線l:y=-
1
2
的距離為d,則|PA|+d的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)C滿足條件:△ABC的周長(zhǎng)為2+2
2
,記動(dòng)點(diǎn)C的軌跡為曲線W.
(1)求W的方程;
(2)曲線W上是否存在這樣的點(diǎn)P:它到直線x=-1的距離恰好等于它到點(diǎn)B的距離?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)已知點(diǎn)A(1,0),點(diǎn)R到直線l:y=2x-6上的一點(diǎn),若
RA
=2
AP
,則點(diǎn)P軌跡方程為
y=2x
y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江省高一下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知點(diǎn)A(1,0)到直線l的距離為2,點(diǎn)到直線l的距離為3,則直線l的條數(shù)是( )

A.1                B.2                C.3                D.4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案