對(duì)于正整數(shù)k,g(k)表示k的最大奇因數(shù),如g(1)=1,g(2)=1,g(3)=3,g(4)=1,….
(1)分別計(jì)算:g(1)+g(3)+g(5)+g(7);g(1)+g(2)+g(3)+g(4);g(2)+g(4)+g(6)+g(8);
(2)求g(1)+g(3)+g(5)+…+g(2k-1);
并證明g(1)+g(2)+g(3)+…+g(2n-1)=g(2)+g(4)+g(6)+…+g(2n);
(3)記f(n)=g(1)+g(2)+g(3)+…+g(2n)其中n為正整數(shù),求f(n).
分析:(1)g(1)+g(3)+g(5)+g(7)=1+3+5+7+16;g(1)+g(2)+g(3)+g(4)=1+1+3+1=6,g(2)+g(4)+g(6)+g(8)=1+1+3+1=6
(2)g(1)+g(3)+g(5)+…+g(2k-1)=1+3+5+…(2k-1),利用等差數(shù)列的求和公式可求
由2k=2•k可得2k中的最大奇因數(shù)即k為中的最大奇因數(shù),從而可得g(2)+g(4)+g(6)+…+g(2n)=g(2•1)+g(2•2)+g(2•3)+…+g(2•2n-1)=g(1)+g(2)+g(3)+…+g(2n-1
(3)由于f(n)=g(1)+g(2)+g(3)+…+g(2n)=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]=1+3+5+…+(2n-1)+g(1)+g(2)+g(3)+…+g(2n-1),由(2)及等差數(shù)列的 求和公式可得f(n)=f(n-1)+4n-1,利用疊加可求
解答:解:(1)g(1)+g(3)+g(5)+g(7)=1+3+5+7+16;g(1)+g(2)+g(3)+g(4)=1+1+3+1=6;g(2)+g(4)+g(6)+g(8)=1+1+3+1=6
(2)g(1)+g(3)+g(5)+…+g(2k-1)=1+3+5+…+(2k-1)=
1+2k-1
2
•k=k2

證明:∵2k=2•k∴2k中的最大奇因數(shù)即k為中的最大奇因數(shù)
∴g(2)+g(4)+g(6)+…+g(2n)=g(2•1)+g(2•2)+g(2•3)+…+g(2•2n-1)=g(1)+g(2)+g(3)+…+g(2n-1
(3)當(dāng)n≥2時(shí),f(n)=g(1)+g(2)+g(3)+…+g(2n)=g(1)+g(3)+g(5)+…+g(2n-1)+g(2)+g(4)+…+g(2n)=1+3+5+…+(2n-1)+g(1)+g(2)+g(3)+…+g(2n-1)=
1+2n-1
2
(2n-1)+f(n-1)
=4n-1+f(n-1)
即f(n)-f(n-1)=4n-1
∴f(3)-f(2)=42,f(4)-f(3)=43,
…f(n)-f(n-1)=4n-1
可得f(n)=42+43+…+4n-1+f(2)=
42(1-4n-2)
1-4
+6=
4n+2
3

當(dāng)n=1時(shí),f(1)=g(1)+g(2)=1+1=2也成立,
f(n)=
4n+2
3
n∈N*
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,疊加求解數(shù)列的通項(xiàng)公式,等差數(shù)列的求和公式,解題時(shí)要注意公式的靈活運(yùn)用,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于正整數(shù)k,g(k)表示k的最大奇因數(shù),如g(1)=1,g(2)=1,g(3)=3,g(4)=1,…,記f(n)=g(1)+g(2)+g(3)+…+g(2n),其中n為正整數(shù).
(1)分別計(jì)算g(1)+g(3)+g(5)+g(7);g(1)+g(2)+g(3)+g(4);g(2)+g(4)+g(6)+g(8);
(2)求證:當(dāng)n≥2時(shí),f(n)=4n-1+f(n-1);
(3)記an=f(n+1)+k(-1)nf(n),當(dāng){an}為遞增數(shù)列時(shí),求實(shí)數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)于正整數(shù)k、g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),設(shè)Sn=g(1)+g(2)+g(3)+…g(2n)
(Ⅰ)求S1、S2、S3;
(Ⅱ)求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)于正整數(shù)k,g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(10)=5;設(shè)Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n),則數(shù)列{Sn}的通項(xiàng)公式是
Sn=
1
3
(4n+2)
Sn=
1
3
(4n+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)于正整數(shù)k、g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),設(shè)Sn=g(1)+g(2)+g(3)+…g(2n)
(Ⅰ)求S1、S2、S3
(Ⅱ)求Sn;
(III)設(shè)bn=
1
Sn-1
,求證數(shù)列{bn}的前n頂和Tn
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東城區(qū)一模)若對(duì)于正整數(shù)k,g(k)表示k的最大奇數(shù)因數(shù),例如g(3)=3,g(10)=5.設(shè)Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n)
(Ⅰ)求g(6),g(20)的值;
(Ⅱ)求S1,S2,S3的值;
(Ⅲ)求數(shù)列{Sn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案