7.?dāng)?shù)列{an}的前n項和為Sn,且Sn=3-$\frac{1}{2}$an,bn是an與an+1的等差中項,則數(shù)列{bn}的通項公式為(  )
A.4×3nB.4×($\frac{1}{3}$)nC.$\frac{1}{3}$×($\frac{4}{3}$)n-1D.$\frac{1}{3}$×($\frac{4}{3}$)n

分析 利用遞推關(guān)系與等比數(shù)列的通項公式可得an,再利用等差數(shù)列的性質(zhì)可得bn

解答 解:∵Sn=3-$\frac{1}{2}$an,
∴a1=S1=3-$\frac{1}{2}{a}_{1}$,解得a1=2.
n≥2時,an=Sn-Sn-1=3-$\frac{1}{2}$an-$(3-\frac{1}{2}{a}_{n-1})$,化為:an=$\frac{1}{3}{a}_{n-1}$.
∴數(shù)列{an}是等比數(shù)列,首項為2,公比為$\frac{1}{3}$.
∴an=$2×(\frac{1}{3})^{n-1}$.
∵bn是an與an+1的等差中項,
∴bn=$\frac{1}{2}$(an+an+1)=$\frac{1}{2}[2×(\frac{1}{3})^{n-1}+2×(\frac{1}{3})^{n}]$=$4×(\frac{1}{3})^{n}$.
故選:B.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其性質(zhì)、遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖為某四面體的三視圖(都是直角三角形),則此四面體的表面三角形為直角三角形的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某市對居民在某一時段用電量(單位:度)進(jìn)行調(diào)查后,為對數(shù)據(jù)進(jìn)行分析統(tǒng)計,按照數(shù)據(jù)大、小將數(shù)據(jù)分成A、B、C三組,如表所示:
 分組 A B C
 用電量 (0,80] (80,250] (250,+∞)
從調(diào)查結(jié)果中隨機(jī)抽取了10個數(shù)據(jù),制成了如圖的莖葉圖:
(Ⅰ)寫出這10個數(shù)據(jù)的中位數(shù)和極差;
(Ⅱ)從這10個數(shù)據(jù)中任意取出3個,其中來自B組的數(shù)據(jù)個數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)用抽取的這10個數(shù)據(jù)作為樣本估計全市的居民用電量情況,從全市依次隨機(jī)抽取20戶,若抽到n戶用電量為B組的可能性較大,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫的是某幾何體的三視圖,則該幾何體的表面積S=( 。
A.17πB.20πC.22πD.$(17+5\sqrt{17})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.不等式2x2-3x+1≥0的解集是(  )
A.[$\frac{1}{2}$,1]B.(-∞,$\frac{1}{2}$]∪[1,+∞)C.[-$\frac{1}{2}$,1]D.(-∞,-$\frac{1}{2}$)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若正數(shù)x,y滿足$\frac{3}{x}$+$\frac{1}{y}$=5,則3x+4y的最小值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知i是虛數(shù)單位,且復(fù)數(shù)z1=3-bi,z2=1-2i,若$\frac{{z}_{1}}{{z}_{2}}$是實數(shù),求實數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)隨機(jī)變量的分布列為如表所示,則Eξ=( 。
ξ0123
p0.10.30.50.1
A.1B.1.8C.1.2D.1.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,P為棱A1B1的中點,點Q在側(cè)面DCC1D1內(nèi)運動,給出下列結(jié)論:
①若BQ⊥A1C,則動點Q的軌跡是線段;
②若|BQ|=$\sqrt{2}$,則動點Q的軌跡是圓的一部分;
③若∠QBD1=∠PBD1,則動點Q的軌跡是橢圓的一部分;
④若點Q到AB與DD1的距離相等,則動點Q的軌跡是拋物線的一部分.
其中結(jié)論正確的是①②(寫出所有正確結(jié)論的序號).

查看答案和解析>>

同步練習(xí)冊答案