2.不等式2x2-3x+1≥0的解集是( 。
A.[$\frac{1}{2}$,1]B.(-∞,$\frac{1}{2}$]∪[1,+∞)C.[-$\frac{1}{2}$,1]D.(-∞,-$\frac{1}{2}$)∪[1,+∞)

分析 把不等式的左側因式分解后直接求解即可.

解答 解:由2x2-3x+1≥0,得(2x-1)(x-1)≥0,
解得x≤$\frac{1}{2}$或x≥1.
所以原不等式的解集為(-∞,$\frac{1}{2}$]∪[1,+∞)
故選:B.

點評 本題考查了一元二次不等式的解法,訓練了因式分解法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線被圓x2+y2-6x+5=0截得的弦長為2,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{3}{2}$C.$\sqrt{6}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖所示的程序框圖中輸出的結果為( 。
A.2B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)y=2sin2x的最小正周期為(  )
A.B.1.5πC.0.5πD.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=cosx+e-x+x2016,令f1(x)=f′(x),f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1=fn′(x),則f2017(x)=( 。
A.-sinx+e-xB.cosx-e-xC.-sinx-e-xD.-cosx+e-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.數(shù)列{an}的前n項和為Sn,且Sn=3-$\frac{1}{2}$an,bn是an與an+1的等差中項,則數(shù)列{bn}的通項公式為( 。
A.4×3nB.4×($\frac{1}{3}$)nC.$\frac{1}{3}$×($\frac{4}{3}$)n-1D.$\frac{1}{3}$×($\frac{4}{3}$)n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如果不等式a-|x-1|≥|x-2|對于x∈[0,2]恒成立,則實數(shù)a的取值范圍是(-∞,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,Sn為數(shù)列{an}的前n項和,a1=b1=1,且b3S3=36,b2S2=8(n∈N*).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若an<an+1,求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在三角形ABC中,A=45°,a=$\sqrt{2}$,$\sqrt{3}$<b<2,則滿足條件的三角形有( 。﹤.
A.1B.2C.0D.與c有關

查看答案和解析>>

同步練習冊答案