【題目】已知函數(shù),對(duì)于任意的 ,都有, 當(dāng)時(shí),,且.
( I ) 求的值;
(II) 當(dāng)時(shí),求函數(shù)的最大值和最小值;
(III) 設(shè)函數(shù),判斷函數(shù)g(x)最多有幾個(gè)零點(diǎn),并求出此時(shí)實(shí)數(shù)m的取值范圍.
【答案】(I);(II);(III)當(dāng) 時(shí),函數(shù)最多有個(gè)零點(diǎn).
【解析】
(Ⅰ)根據(jù)條件,取特殊值求解;
(Ⅱ)根據(jù)定義,判斷函數(shù)的單調(diào)性,進(jìn)而求出函數(shù)的最值;
(Ⅲ)根據(jù)定義,判斷函數(shù)為奇函數(shù),得出g(x)=f(x2﹣2|x|﹣m),令g(x)=0即f(x2﹣2|x|﹣m)=0=f(0),根據(jù)單調(diào)性可得 x2﹣2|x|﹣m=0,根據(jù)二次函數(shù)的性質(zhì)可知最多有4個(gè)零點(diǎn),且m∈(﹣1,0).
(I)令得,得.
令得,
令得
(II)任取且,則,
因?yàn)?/span>,即,
令
則.
由已知時(shí),且,則,
所以 ,,
所以函數(shù)在R上是減函數(shù),
故 在單調(diào)遞減.
所以,
又,
由,得 ,
,
故.
(III) 令代入,
得,
所以,故為奇函數(shù).
∴
=
=
,
令,即,
因?yàn)楹瘮?shù)在R上是減函數(shù),
所以,即,
所以當(dāng) 時(shí),函數(shù)最多有4個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】醫(yī)藥公司針對(duì)某種疾病開發(fā)了一種新型藥物,患者單次服用制定規(guī)格的該藥物后,其體內(nèi)的藥物濃度隨時(shí)間的變化情況(如圖所示):當(dāng)時(shí),與的函數(shù)關(guān)系式為(為常數(shù));當(dāng)時(shí),與的函數(shù)關(guān)系式為(為常數(shù)).服藥后,患者體內(nèi)的藥物濃度為,這種藥物在患者體內(nèi)的藥物濃度不低于最低有效濃度,才有療效;而超過最低中毒濃度,患者就會(huì)有危險(xiǎn).
(1)首次服藥后,藥物有療效的時(shí)間是多長(zhǎng)?
(2)首次服藥1小時(shí)后,可否立即再次服用同種規(guī)格的這種藥物?
(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義區(qū)間[x1 , x2]長(zhǎng)度為x2﹣x1(x2>x1),已知函數(shù)f(x)= (a∈R,a≠0)的定義域與值域都是[m,n],則區(qū)間[m,n]取最大長(zhǎng)度時(shí)a的值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某高中數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)
幾何題 | 代數(shù)題 | 合計(jì) | ||
男同學(xué) | 22 | 8 | 30 | |
女同學(xué) | 8 | 12 | 20 | |
合計(jì) | 30 | 20 | 50 |
(1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)以上列聯(lián)表中女生選做幾何題的頻率作為概率,從該校1500名女生中隨機(jī)選6名女生,記6名女生選做幾何題的人數(shù)為,求的數(shù)學(xué)期望和方差.
附表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實(shí)數(shù) b的取值范圍是( )
A.(﹣∞, )
B.(﹣∞, )
C.(﹣∞,3)
D.(﹣∞, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長(zhǎng)為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求證:AC⊥FB
(2)求二面角E﹣FB﹣C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把…這樣的數(shù)稱為“三角形數(shù)”,而把…
這樣的數(shù)稱為“正方形數(shù)”.如圖,可以發(fā)現(xiàn)任何一個(gè)大于的“正方形數(shù)”都可以看作兩個(gè)相鄰
“三角形數(shù)”之和,下列四個(gè)等式:①;②;③;
④ 中符合這一規(guī)律的等式是_____________.(填寫所有正確結(jié)論的編號(hào))
……
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知().
(1)當(dāng)時(shí),求關(guān)于的不等式的解集;
(2)若f(x)是偶函數(shù),求k的值;
(3)在(2)條件下,設(shè),若函數(shù)與的圖象有公共點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】,為兩個(gè)不同的平面,,為兩條不同的直線,下列命題中正確的是( )
①若,,則; ②若,,則;
③若,,,則 ④若,,,則.
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com