9.己知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的離心率為$\frac{\sqrt{5}}{2}$,F(xiàn)1,F(xiàn)2時雙曲線的兩個焦點,A為左頂點、B(0,b),點P在線段AB上,則$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值為-$\frac{21}{5}$.

分析 設P(x,y)推出$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=(-$\sqrt{5}$-x,-y)($\sqrt{5}$-x,-y)=x2+y2-5,通過垂直整合求解最小值即可.

解答 解:雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的離心率為$\frac{\sqrt{5}}{2}$,A為左頂點、可得a=2,則c=$\sqrt{5}$,b=$\sqrt{{c}^{2}-{a}^{2}}$=1,
設P(x,y)則$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=(-$\sqrt{5}$-x,-y)($\sqrt{5}$-x,-y)=x2+y2-5,
顯然,當OP⊥AB時,x2+y2取得最小值,由面積法易得(x2+y2min=$\frac{4}{5}$,故點P在線段AB上,
則$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值為:$\frac{4}{5}-5=-\frac{21}{5}$.
故答案為:-$\frac{21}{5}$.

點評 本題考查雙曲線的簡單性質的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.在ABC中,角A,B,C的對邊分別是a,b,c,已知2acosA=ccosB+bcosC.
(Ⅰ)求cosA的值;
(Ⅱ)若a=1,cos2$\frac{B}{2}$+cos2$\frac{C}{2}$=1+$\frac{\sqrt{3}}{4}$,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,F(xiàn)1、F2分別為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點,過F1的直線l交C于A、B兩點,若C的離心率為$\sqrt{7}$,|AB|=|AF2|,則直線l的斜率為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)$f(x)=lnx-2\sqrt{x}$的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.用數(shù)學歸納法證明1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2n-1}$<n(n∈N*,n>1),第一步應驗證不等式( 。
A.1+$\frac{1}{2}$<2B.1+$\frac{1}{2}$+$\frac{1}{3}$<3C.1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$<3D.1+$\frac{1}{2}$+$\frac{1}{3}$<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.己知函數(shù)f(x)=|2|x|-1|.
(I)求不等式f(x)≤1的解集A;
(Ⅱ)當m,n∈A時,證明:|m+n|≤mn+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.觀察圖中各正方形圖案,每條邊上有an個圓點,第an個圖案中圓點的個數(shù)是an,按此規(guī)律推斷出所有圓點總和Sn與n的關系式為( 。
A.${S_n}=2{n^2}-2n$B.${S_n}=2{n^2}$C.${S_n}=4{n^2}-3n$D.${S_n}=2{n^2}+2n$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(1)化簡$\frac{{cos({{180}°}+α)•sin(α+{{360}°})}}{{sin(-α-{{180}°})•cos(-{{180}°}-α)}}$.
(2)已知$tanα=-\frac{3}{4}$,求$\frac{{cos(\frac{π}{2}+α)•sin(-π-α)}}{{cos(\frac{11π}{2}-α)•sin(\frac{11π}{2}+α)}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖,函數(shù)y=-x2+2x+1與y=1相交形成一個封閉圖形(圖中的陰影部分),則該封閉圖形的面積是$\frac{4}{3}$.

查看答案和解析>>

同步練習冊答案