【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過,,三點(diǎn),是線段上的動(dòng)點(diǎn),,是過點(diǎn)且互相垂直的兩條直線,其中交軸于點(diǎn),交圓于、兩點(diǎn).
(1)若,求直線的方程;
(2)若是使恒成立的最小正整數(shù).
①求的值;
②求三角形的面積的最小值.
【答案】(1)(2)①②
【解析】
(1)確定出圓的圓心坐標(biāo),然后考慮直線的斜率是否存在,斜率存在時(shí)利用半弦長(zhǎng)、半徑、圓心到直線的距離構(gòu)造成的直角三角形求解出直線的方程,注意驗(yàn)證是否符合;
(2) ①根據(jù)得到的軌跡應(yīng)該滿足的條件,再將其轉(zhuǎn)化為點(diǎn)到直線距離問題完成求解;
②考慮分類討論直線的斜率存在與否,并計(jì)算或表示出對(duì)應(yīng)的面積,從而確定出面積的最小值.
(1)由題意可知,圓的直徑為,
所以圓方程為:.
因?yàn)?/span>,所以到直線的距離為.
若斜率不存在,則到直線的距離為2,不符合,所以斜率存在;
設(shè)方程為:,則,解得,,
當(dāng)時(shí),直線與軸無交點(diǎn),不符合,舍去.
所以,此時(shí)直線的方程為.
(2)①設(shè),由點(diǎn)在線段上,得,即.
由,得.
依題意知,線段與圓至多有一個(gè)公共點(diǎn),
故,解得或.
因?yàn)?/span>是使恒成立的最小正整數(shù),所以.
②,圓方程為:,
(i)當(dāng)直線:時(shí),直線的方程為,此時(shí),;
(ii)當(dāng)直線的斜率存在時(shí),設(shè)的方程為:,
則的方程為:,點(diǎn).所以,.
又圓心到的距離為,
所以,.
故,取等號(hào)時(shí).
又因?yàn)?/span>,所以三角形面積的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電力公司在工程招標(biāo)中是根據(jù)技術(shù)、商務(wù)、報(bào)價(jià)三項(xiàng)評(píng)分標(biāo)準(zhǔn)進(jìn)行綜合評(píng)分的,按照綜合得分的高低進(jìn)行綜合排序,綜合排序高者中標(biāo).
分值權(quán)重表如下:
總分 | 技術(shù) | 商務(wù) | 報(bào)價(jià) |
100% | 50% | 10% | 40% |
技術(shù)標(biāo)、商務(wù)標(biāo)基本都是由公司的技術(shù)、資質(zhì)、資信等實(shí)力來決定的.報(bào)價(jià)表則相對(duì)靈活,報(bào)價(jià)標(biāo)的評(píng)分方法是:基準(zhǔn)價(jià)的基準(zhǔn)分是68分,若報(bào)價(jià)每高于基準(zhǔn)價(jià)1%,則在基準(zhǔn)分的基礎(chǔ)上扣0.8分,最低得分48分;若報(bào)價(jià)每低于基準(zhǔn)價(jià)1%,則在基準(zhǔn)分的基礎(chǔ)上加0.8分,最高得分為80分.若報(bào)價(jià)低于基準(zhǔn)價(jià)15%以上(不含15%)每再低1%,在80分在基礎(chǔ)上扣0.8分.
在某次招標(biāo)中,若基準(zhǔn)價(jià)為1000(萬元).甲、乙兩公司綜合得分如下表:
公司 | 技術(shù) | 商務(wù) | 報(bào)價(jià) |
甲 | 80分 | 90分 | A甲分 |
乙 | 70分 | 100分 | A乙分 |
甲公司報(bào)價(jià)為1100(萬元),乙公司的報(bào)價(jià)為800(萬元)則甲,乙公司的綜合得分,分別是( )
A. 73,75.4B. 73,80C. 74.6,76D. 74.6,75.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長(zhǎng)為,離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓的左,右焦點(diǎn)分別為,左,右頂點(diǎn)分別為,,點(diǎn),,為橢圓上位于軸上方的兩點(diǎn),且,直線的斜率為,記直線,的斜率分別為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:對(duì)于實(shí)數(shù)和兩定點(diǎn),在某圖形上恰有個(gè)不同的點(diǎn),使得,稱該圖形滿足“度契合”.若邊長(zhǎng)為4的正方形中,,且該正方形滿足“4度契合”,則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰梯形中,,,分別為,的中點(diǎn),,為中點(diǎn)現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體在圖②中,
(1)證明:;
(2)求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)到兩坐標(biāo)軸的距離之和等于它到定點(diǎn)的距離,記點(diǎn)P的軌跡為,給出下列四個(gè)結(jié)論:①關(guān)于原點(diǎn)對(duì)稱;②關(guān)于直線對(duì)稱;③直線與有無數(shù)個(gè)公共點(diǎn);④在第一象限內(nèi),與x軸和y軸所圍成的封閉圖形的面積小于.其中正確的結(jié)論是________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海濕地如圖所示,A、B和C、D分別是以點(diǎn)O為中心在東西方向和南北方向設(shè)置的四個(gè)觀測(cè)點(diǎn),它們到點(diǎn)O的距離均為公里,實(shí)線PQST是一條觀光長(zhǎng)廊,其中,PQ段上的任意一點(diǎn)到觀測(cè)點(diǎn)C的距離比到觀測(cè)點(diǎn)D的距離都多8公里,QS段上的任意一點(diǎn)到中心點(diǎn)O的距離都相等,ST段上的任意一點(diǎn)到觀測(cè)點(diǎn)A的距離比到觀測(cè)點(diǎn)B的距離都多8公里,以O為原點(diǎn),AB所在直線為x軸建立平面直角坐標(biāo)系xOy.
(1)求觀光長(zhǎng)廊PQST所在的曲線的方程;
(2)在觀光長(zhǎng)廊的PQ段上,需建一服務(wù)站M,使其到觀測(cè)點(diǎn)A的距離最近,問如何設(shè)置服務(wù)站M的位置?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司推出一新款手機(jī),因其功能強(qiáng)大,外觀新潮,一上市便受到消費(fèi)者爭(zhēng)相搶購,銷量呈上升趨勢(shì).散點(diǎn)圖是該款手機(jī)上市后前6周的銷售數(shù)據(jù).
(Ⅰ)根據(jù)散點(diǎn)圖,用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)該款手機(jī)第8周的銷量;
(Ⅱ)為了分析市場(chǎng)趨勢(shì),該公司市場(chǎng)部從前6周的銷售數(shù)據(jù)中隨機(jī)抽取2周的數(shù)據(jù),求抽到的這2周的銷量均在20萬臺(tái)以下的概率.
參考公式:回歸直線方程,其中:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式有且僅有兩個(gè)正整數(shù)解(其中e=2.71828… 為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)的取值范圍是( )
A. (,] B. (,] C. [,) D. [,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com