【題目】設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1﹣x),f(﹣ )=

【答案】
【解析】解:∵f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1﹣x), ∴ =f(﹣ )=﹣f( )=﹣2× (1﹣ )=﹣ ,
所以答案是:﹣
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)奇偶性的性質(zhì)和函數(shù)的值,掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇;函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)fx)=3x

(1)若fx)=8,求x的值;

(2)對(duì)于任意的x∈[0,2],[fx)-3]3x+13-m≥0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2-(a+2)x+lnx

(1)當(dāng)a=1時(shí),求曲線yf(x)在點(diǎn)(1,f(1))處的切線方程;

(2)若對(duì)任意x1,x2∈(0,+∞),x1x2,有f(x1)+2x1f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2019·濰坊期末]某鋼鐵加工廠新生產(chǎn)一批鋼管,為了了解這批產(chǎn)品的質(zhì)量狀況,檢驗(yàn)員隨機(jī)抽取了100件鋼管作為樣本進(jìn)行檢測,將它們的內(nèi)徑尺寸作為質(zhì)量指標(biāo)值,由檢測結(jié)果得如下頻率分布表和頻率分布直方圖:

分組

頻數(shù)

頻率

25.05~25.15

2

0.02

25.15~25.25

25.25~25.35

18

25.35~25.45

25.45~25.55

25.55~25.65

10

0.1

25.65~25.75

3

0.03

合計(jì)

100

1

(1)求,

(2)根據(jù)質(zhì)量標(biāo)準(zhǔn)規(guī)定:鋼管內(nèi)徑尺寸大于等于25.75或小于25.15為不合格,鋼管尺寸在為合格等級(jí),鋼管尺寸在為優(yōu)秀等級(jí),鋼管的檢測費(fèi)用為0.5元/根.

(i)若從的5件樣品中隨機(jī)抽取2根,求至少有一根鋼管為合格的概率;

(ii)若這批鋼管共有2000根,把樣本的頻率作為這批鋼管的頻率,有兩種銷售方案:

①對(duì)該批剩余鋼管不再進(jìn)行檢測,所有鋼管均以45元/根售出;

②對(duì)該批剩余鋼管一一進(jìn)行檢測,不合格產(chǎn)品不銷售,合格等級(jí)的鋼管50元/根,優(yōu)等鋼管60元/根.

請你為該企業(yè)選擇最好的銷售方案,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①正切函數(shù)圖象的對(duì)稱中心是唯一的;

②若函數(shù)的圖像關(guān)于直線對(duì)稱,則這樣的函數(shù)是不唯一的;

③若,是第一象限角,且,則;

④若是定義在上的奇函數(shù),它的最小正周期是,則

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sin(A﹣B), , =(1,2sinB),且 =﹣sin2C,其中A、B、C分別為△ABC的三邊a、b、c所對(duì)的角. (Ⅰ)求角C的大。
(Ⅱ)若 ,且SABC= ,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),有下列說法:

①它的極大值點(diǎn)為-3,極小值點(diǎn)為3;②它的單調(diào)遞減區(qū)間為[-2,2];

③方程有且僅有3個(gè)實(shí)根時(shí),的取值范圍是(18,54).

其中正確的說法有( )個(gè)

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x,y滿足不等式組 ,若z=ax+y的最大值為2a+4,最小值為a+1,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長度單位.已知直線l的參數(shù)方程為 (t為參數(shù),0<α<π),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ. (Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A、B兩點(diǎn),當(dāng)α變化時(shí),求|AB|的最小值.

查看答案和解析>>

同步練習(xí)冊答案