對于曲線C:
x2
4-k
+
y2
k-1
=1給出下面四個命題:
①曲線C不可能表示橢圓
②當1<k<4時,曲線C表示橢圓
③若曲線C表示雙曲線,則k<1或k>4
④若曲線C表示焦點在x 軸上的橢圓,則1<k<
5
2

下列選項正確的是( 。
A、①③B、③④C、②③D、①④
考點:圓錐曲線的共同特征
專題:計算題,圓錐曲線的定義、性質與方程
分析:根據(jù)曲線方程的特點,結合橢圓雙曲線的標準方程分別判斷即可.
解答: 解:①當1<k<4且k≠
5
2
時,曲線表示橢圓,所以①錯誤;
②當k=
5
2
時,4-k=k-1,此時曲線表示圓,所以②錯誤.
③若曲線C表示雙曲線,則(4-k)(k-1)<0,解得k>4或k<1,所以③正確.
④若曲線C表示焦點在x軸上的橢圓,則
k-1>0
4-k>0
4-k>k-1
,解得1<k<
5
2
,所以④正確.
故選B.
點評:本題主要考查圓錐曲線的方程,根據(jù)橢圓和雙曲線的標準方程和定義是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
a
,
b
都是單位向量,則下列結論正確的是(  )
A、
a
b
=1
B、
a
2=
b
2
C、
a
b
D、
a
b
=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若平面直角坐標系中兩點P與Q滿足:①P、Q分別在函數(shù)f(x),g(x)的圖象上;②P與Q關于點(1,1)對稱,則稱點對(P,Q)是一個“相望點對”(規(guī)定:(P,Q)與(Q,P)是同一個“相望點對”),函數(shù)y=
x-2
x-1
與y=2sinπx+1(-2≤x≤4)的圖象中“相望點對”的個數(shù)是(  )
A、8B、6C、4D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A={3,5,6,8},B={4,5,7,8},則A∩B=( 。
A、{3,4,5,6,7,8}
B、{5,8}
C、{3,6,7,4}
D、{3,5,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a>0,b>0,且2a+b=1,則S=
ab
-4a2-b2的最大值為( 。
A、
2
+2
4
B、
2
2
-1
C、
2
-2
4
D、
2
2
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用反證法證明命題“若a2m+b2n=0,(a,b∈R,且m,n∈N*),則a,b全為0”時,應假設( 。
A、a,b中至少有一個為0
B、a,b中至少有一個不為0
C、a,b全不為0
D、a,b中只有一個為0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x2+2x+3在區(qū)間[-2,2]上的最大、最小值分別為(  )
A、4,3B、3,-5
C、4,-5D、5,-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

滿足f(x+π)=-f(x)且為奇函數(shù)的函數(shù)f(x)可能是(  )
A、cos2x
B、sinx
C、sin
x
2
D、cosx
E、sin
x
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=AC,∠BAC=90°,點E,F(xiàn)在BC邊上(不與B,C重合),∠EAF=45°,問以BE、EF、FC三條線段為邊,是否總能構成直角三角形?請說明結論及理由.

查看答案和解析>>

同步練習冊答案