19.已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q的必要條件,求實(shí)數(shù)m的取值范圍
(2)若m=2,¬p∨¬q為假,求實(shí)數(shù)x的取值范圍.

分析 (1)對(duì)于p:(x+2)(x-6)≤0,解得-2≤x≤6.又m>0,q:2-m≤x≤2+m.由p是q的必要條件,即q⇒p,進(jìn)而得出.
(2)m=2時(shí),命題q:0≤x≤4.由¬p∨¬q為假,可得¬p與¬q都為假,p與q都為真.即可得出.

解答 解:(1)對(duì)于p:(x+2)(x-6)≤0,解得-2≤x≤6.
又m>0,q:2-m≤x≤2+m.
由p是q的必要條件,即q⇒p,∴-2≤2-m,2+m≤6,
解得0<m≤4.
∴實(shí)數(shù)m的取值范圍是(0,4].
(2)m=2時(shí),命題q:0≤x≤4.
∵¬p∨¬q為假,∴¬p與¬q都為假,則p與q都為真.
∴$\left\{\begin{array}{l}{-2≤x≤6}\\{0≤x≤4}\end{array}\right.$,解得0≤x≤4.
∴實(shí)數(shù)x的取值范圍是[0,4].

點(diǎn)評(píng) 本題考查了不等式的解法、集合運(yùn)算性質(zhì)、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列各組角中,終邊相同的角是( 。
A.$\frac{kπ}{2}$與 kπ+$\frac{π}{2}$(k∈Z)B.kπ±$\frac{π}{3}$與 $\frac{kπ}{3}$(k∈Z)
C.(2k+1)π 與 (4k±1)π  (k∈Z)D.kπ+$\frac{π}{6}$與 2kπ±$\frac{π}{6}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知拋物線(xiàn)C:y2=2px(p>0)與直線(xiàn)l:x=4交于A,B兩點(diǎn),若△OAB的面積為32,則拋物線(xiàn)C的準(zhǔn)線(xiàn)方程為( 。
A.x=-$\sqrt{2}$B.x=-4C.x=-1D.x=-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.以下四個(gè)命題中是真命題的是( 。
A.對(duì)分類(lèi)變量x與y的隨機(jī)變量k2的觀測(cè)值k來(lái)說(shuō),k越小,判斷“x與y有關(guān)系”的把握程度越大
B.兩個(gè)隨機(jī)變量的線(xiàn)性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近于0
C.若數(shù)據(jù)x1,x2,x3,…,xn的方差為1,則2x1,2x2,2x3,…,2xn的方差為2
D.在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在區(qū)間[1,7]上任取一個(gè)數(shù),這個(gè)數(shù)在區(qū)間[5,8]上的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}x+2,x<0\\{3^{x+1}},x≥0\end{array}\right.$,則f[f(-2)]=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.100個(gè)樣本數(shù)據(jù)的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[70,90)的頻數(shù)等于65.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.等差數(shù)列{an}中,a3=8,a7=20,若數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和為$\frac{4}{25}$,則n的值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若角A,B,C依次成等差數(shù)列,且$a=1,c=\sqrt{3}$,則S△ABC等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案