現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖所示,同一個(gè)平面內(nèi)有兩個(gè)邊長都是的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為;類比到空間,有兩個(gè)棱長均為的正方體,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方體重疊部分的體積恒為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
用反證法證明命題:“如果,可被整除,那么中至少有一個(gè)能被整除”時(shí),假設(shè)的內(nèi)容應(yīng)為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
黑白兩種顏色的正六形地面磚塊按如圖的規(guī)律拼成若干個(gè)圖案,則第4個(gè)圖案中有白色地面磚________________塊.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
1955年,印度數(shù)學(xué)家卡普耶卡(D.R.Kaprekar)研究了對(duì)四位自然數(shù)的一種交換:任給出四位數(shù),用的四個(gè)數(shù)字由大到小重新排列成一個(gè)四位數(shù)m,再減去它的反序數(shù)n(即將的四個(gè)數(shù)字由小到大排列,規(guī)定反序后若左邊數(shù)字有0,則將0去掉運(yùn)算,比如0001,計(jì)算時(shí)按1計(jì)算),得出數(shù),然后繼續(xù)對(duì)重復(fù)上述變換,得數(shù),…,如此進(jìn)行下去,卡普耶卡發(fā)現(xiàn),無論是多大的四位數(shù),只要四個(gè)數(shù)字不全相同,最多進(jìn)行k次上述變換,就會(huì)出現(xiàn)變換前后相同的四位數(shù)t(這個(gè)數(shù)稱為Kaprekar變換的核).通過研究10進(jìn)制四位數(shù)2014可得Kaprekar變換的核為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
將石子擺成如下圖的梯形形狀.稱數(shù)列為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,判斷數(shù)列的第項(xiàng)______________;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
若等差數(shù)列的首項(xiàng)為公差為,前項(xiàng)的和為,則數(shù)列為等差數(shù)列,且通項(xiàng)為.類似地,請(qǐng)完成下列命題:若各項(xiàng)均為正數(shù)的等比數(shù)列的首項(xiàng)為,公比為,前項(xiàng)的積為,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
平面內(nèi)有條直線,其中任何兩條不平行,任何三條不共點(diǎn),當(dāng)時(shí)把平面分成的區(qū)域數(shù)記為,則時(shí) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
用數(shù)學(xué)歸納法證明不等式++…+>的過程中,由n=k推導(dǎo)n=k+1時(shí),不等式的左邊增加的式子是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com