8.已知函數(shù)f(x)=ax7+bx+$\frac{c}{x}$-2,若f(2006)=10,則f(-2006)的值為( 。
A.10B.-10C.-14D.無(wú)法確定

分析 由已知得f(2016)=a×20167+b×2016+$\frac{c}{2016}$-2=10,從而a×20167+b×2016+$\frac{c}{2016}$=12,由此能求出f(-2016).

解答 解:∵函數(shù)f(x)=ax7+bx+$\frac{c}{x}$-2,f(2006)=10,
∴f(2016)=a×20167+b×2016+$\frac{c}{2016}$-2=10,
∴a×20167+b×2016+$\frac{c}{2016}$=12,
∴f(-2016)=$a×(-2016)^{7}+b×(-2016)+\frac{c}{-2016}$-2
=-(a×20167+b×2016+$\frac{c}{2016}$)-2
=-12-2=-14.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)值的求法及應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)面A1ADD1⊥底面ABCD,D1A=D1D=$\sqrt{2}$,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(1)求證:A1O∥平面AB1C
(2)求直線B1C與平面C1CDD1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若曲線f(x)=ax3+ln(-2x)存在垂直于y軸的切線,則實(shí)數(shù)a取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$\frac{cos2α}{cos(α+\frac{π}{4})}$=$\frac{1}{2}$,則sin2α的值為( 。
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和為Sn滿足Sn2=an(Sn-1),設(shè)bn=log2$\frac{S_n}{{{S_{n+2}}}}$,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,則滿足Tn≥6的最小正整數(shù)n是( 。
A.10B.11C.12D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.5個(gè)排成一排,在下列情況下,各有多少種不同排法?
(1)甲排頭
(2)甲不排頭,也不排尾
(3)甲、乙、丙三人必須在一起
(4)甲、乙、丙三人兩兩不相鄰
(5)甲在乙的左邊(不一定相鄰)
(6)甲不排頭,乙不排當(dāng)中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=( 。
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知${(1-2x)^{2017}}={a_0}+{a_1}({x-1})+{a_2}{({x-1})^2}+…+{a_{2017}}{({x-1})^{2017}}$,則a1-2a2+3a3-4a4+…2016a2016+2017a2017( 。
A.2017B.4034C.-4034D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在平行四邊形ABCD中,O為對(duì)角線AC與BD的交點(diǎn),則$\overrightarrow{BC}$-$\overrightarrow{AB}$=( 。
A.2$\overrightarrow{OA}$B.2$\overrightarrow{OB}$C.2$\overrightarrow{OC}$D.2$\overrightarrow{OD}$

查看答案和解析>>

同步練習(xí)冊(cè)答案