已知圓,直線

(Ⅰ)若相切,求的值;

(Ⅱ)是否存在值,使得相交于兩點,且(其中為坐標原點),若存在,求出,若不存在,請說明理由.

 

【答案】

(1)(2)存在m=9±2

【解析】

試題分析:解:(Ⅰ)由圓方程配方得(x+1)2+(y-3)2=9,

圓心為C(-1,3),半徑為 r = 3,                             2分

l與C相切,則得=3,                          

∴(3m-4)2=9(1+m2),∴m =.                               5分

(Ⅱ)假設存在m滿足題意。

由   x2+y2+2x-6y+1=0  ,消去x得

x=3-my             

(m2+1)y2-(8m+6)y+16=0,                                  

由△=(8m+6)2-4(m2+1)·16>0,得m>,                  8分

設A(x1,y1),B(x2,y2),則y1+y2=,y1y2=

 OA·OB=x1x2+y1y2

=(3-my1)(3-my2)+y1y2

=9-3m(y1+y2)+(m2+1)y1y2

=9-3m·+(m2+1)·

=25-=0                             10分

24m2+18m=25m2+25,m2-18m+25=0,

∴m=9±2,適合m>,

∴存在m=9±2符合要求.                    12分

考點:直線與圓的位置關系

點評:解決該試題的關鍵是利用聯(lián)立方程組,設而不求的思想和韋達定理來表示得到求解,基礎題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓和直線x-6y-10=0相切于(4,-1),且經過點(9,6),求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年河北唐山市高三年級第一學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

已知圓,直線,以O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系.

(1)將圓C和直線方程化為極坐標方程;

(2)P是上的點,射線OP交圓C于點R,又點Q在OP上且滿足,當點P在上移動時,求點Q軌跡的極坐標方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省高三上學期期中考試理科數(shù)學試卷(解析版) 題型:選擇題

已知圓與直線都相切,圓心在直線上,則圓的方程為(      )

A、          B、

 C、         D、

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年大綱版高三上學期單元測試(7)數(shù)學試卷解析版 題型:填空題

已知圓和直線. 若圓與直線沒有公共點,則的取值范圍是          

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆北京市高二上學期期中考試數(shù)學試卷 題型:解答題

已知圓和直線,

(1)求證:不論取什么值,直線和圓總相交;

(2)求取何值時,直線被圓截得的弦最短,并求出最短弦的長;

 

 

查看答案和解析>>

同步練習冊答案