【題目】已知焦點(diǎn)在x軸上的橢圓C1的長(zhǎng)軸長(zhǎng)為8,短半軸為2,拋物線C2的頂點(diǎn)在原點(diǎn)且焦點(diǎn)為橢圓C1的右焦點(diǎn).

(1)求拋物線C2的標(biāo)準(zhǔn)方程;

(2)過(guò)(10)的兩條相互垂直的直線與拋物線C2有四個(gè)交點(diǎn),求這四個(gè)點(diǎn)圍成四邊形的面積的最小值.

【答案】(1)y28x;(2)96.

【解析】

(1)由已知直接可求出橢圓的,運(yùn)用橢圓之間的關(guān)系求出,最后可求出拋物線C2的標(biāo)準(zhǔn)方程;

(2) 由題意易得兩條直線的斜率存在且不為0,設(shè)其中一條直線l1的斜率為k,設(shè)出直線l1方程與拋物線方程聯(lián)立,利用一元二次方程根與系數(shù)關(guān)系,可以求出弦長(zhǎng),同理求出直線l2與拋物線相交時(shí),弦長(zhǎng)的表達(dá)式,最后求出面積表達(dá)式,利用基本不等式可以求出四邊形的面積的最小值.

(1)設(shè)橢圓半焦距為cc0),由題意得c

設(shè)拋物線C2的標(biāo)準(zhǔn)方程為y22pxp0),則,∴p4,

∴拋物線C2的標(biāo)準(zhǔn)方程為y28x;

(2)由題意易得兩條直線的斜率存在且不為0,設(shè)其中一條直線l1的斜率為k,直線l1方程為ykx1),則另一條直線l2的方程為yx1),

聯(lián)立k2x2﹣(2k2+8x+k20,△=32k2+640,設(shè)直線l1與拋物線C2的交點(diǎn)為A,B,

則則|AB||x2x1|

同理設(shè)直線l2與拋物線C2的交點(diǎn)為C,D,

|CD|4

∴四邊形的面積S|AB||CD|4

t2,則t≥4(當(dāng)且僅當(dāng)k±1時(shí)等號(hào)成立),

∴當(dāng)兩直線的斜率分別為1和﹣1時(shí),四邊形的面積最小,最小值為96

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面幾種推理過(guò)程是演繹推理的是( 。

A. 某校高三有8個(gè)班,1班有51人,2班有53人,3班有52人,由此推測(cè)各班人數(shù)都超過(guò)50

B. 由三角形的性質(zhì),推測(cè)空間四面體的性質(zhì)

C. 平行四邊形的對(duì)角線互相平分,菱形是平行四邊形,所以菱形的對(duì)角線互相平分

D. 在數(shù)列中,,可得,由此歸納出的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

支付金額

支付方式

不大于2000

大于2000

僅使用A

27

3

僅使用B

24

1

(Ⅰ)估計(jì)該校學(xué)生中上個(gè)月A,B兩種支付方式都使用的人數(shù);

(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個(gè)月支付金額大于2000元的概率;

(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒(méi)有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:的焦點(diǎn)為F1(–1、0),

F21,0).過(guò)F2x軸的垂線l,在x軸的上方,l與圓F2:交于點(diǎn)A,與橢圓C交于點(diǎn)D.連結(jié)AF1并延長(zhǎng)交圓F2于點(diǎn)B,連結(jié)BF2交橢圓C于點(diǎn)E,連結(jié)DF1.已知DF1=

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖所示,拋物線軸所圍成的區(qū)域是一塊等待開(kāi)墾的土地,現(xiàn)計(jì)劃在該區(qū)域內(nèi)圍出一塊矩形地塊ABCD作為工業(yè)用地,其中A、B在拋物線上,C、D在軸上.已知工業(yè)用地每單位面積價(jià)值為,其它的三個(gè)邊角地塊每單位面積價(jià)值元.

(1)等待開(kāi)墾土地的面積;

(2)如何確定點(diǎn)C的位置,才能使得整塊土地總價(jià)值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們稱(chēng)滿足以下兩個(gè)條件的有窮數(shù)列階“期待數(shù)列”;①;②.

(1)若數(shù)列的通項(xiàng)公式是,試判斷數(shù)列是否為2014階“期待數(shù)列”,并說(shuō)明理由;

(2)若等比數(shù)列階“期待數(shù)列”,求公比及數(shù)列的通項(xiàng)公式;

(3)若一個(gè)等差數(shù)列既是()階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,已知橢圓,拋物線的焦點(diǎn)的一個(gè)頂點(diǎn),設(shè)上的動(dòng)點(diǎn),且位于第一象限,記在點(diǎn)處的切線為.

1)求的值和切線的方程(用表示)

2)設(shè)交于不同的兩點(diǎn),線段的中點(diǎn)為,直線與過(guò)且垂直于軸的直線交于點(diǎn).

i)求證:點(diǎn)在定直線上;

ii)設(shè)軸交于點(diǎn),記的面積為,的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為2的圓位于軸右側(cè),且與直線相切.

(1)求圓的方程;

(2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面,邊上一點(diǎn),,.

(1)證明:平面平面.

(2)若,試問(wèn):是否與平面平行?若平行,求三棱錐的體積;若不平行,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案