12.記關(guān)于x的不等式$\frac{x-a}{x+1}$<0的解集為P,不等式|x-1|≤1的解集為Q.
(1)若a=3,求P;
(2)若P∩Q=Q,求正數(shù)a的取值.

分析 (1)將a=3代入分式不等式等價轉(zhuǎn)化,由一元二次不等式的解法求出解集P;
(2)由絕對值不等式求出解集Q,由a的符號,等價轉(zhuǎn)化分式不等式后,由一元二次不等式的解法求出P,由條件和子集的關(guān)系求出正數(shù)a的取值.

解答 解:(1)當(dāng)a=3時,不等式為$\frac{x-3}{x+1}<0$,即(x+1)(x-3)<0,
解得-1<x<3,即解集P={x|-1<x<3}.…(4分)
( 2)由題意得,Q={x||x-1|≤1}={x|0≤x≤2},
由a>0,不等式為$\frac{x-a}{x+1}<0$,即(x+1)(x-a)<0,
解得-1<x<a,即解集得P={x|-1<x<a},…(8分)
又P∩Q=Q,所以Q⊆P,所以a>2…(10分)

點評 本題考查分式不等式的解法及其轉(zhuǎn)化,絕對值不等式的解法,一元二次不等式的解法,以及子集的關(guān)系,考查轉(zhuǎn)化思想,化簡、變形能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行下面的程度框圖,若輸出的值為-5,則判斷框中可以填( 。
A.z>10B.z≤10C.z>20D.z≤20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.高三學(xué)生小羅利用暑假參加社會實踐,為了幫助貿(mào)易公司的購物網(wǎng)站優(yōu)化今年國慶節(jié)期間的營銷策略,他對去年10月1日當(dāng)天在該網(wǎng)站消費且消費金額不超過1000元的1000名(女性800名,男性200名)網(wǎng)購者,根據(jù)性別按分層抽樣的方法抽取100名進(jìn)行分析,得到如下統(tǒng)計圖表(消費金額單位:元):
消費金額(0,200)[200,400)[400,600)[600,800)[800,1000)
人數(shù)5101547x
女性消費情況:
男性消費情況:
消費金額(0,200)[200,400)[400,600)[600,800)[800,1000)
人數(shù)2310y2
(Ⅰ)現(xiàn)從抽取的100名且消費金額在[800,1000](單位:元)的網(wǎng)購者中隨機選出兩名發(fā)放網(wǎng)購紅包,求選出的這兩名網(wǎng)購者恰好是一男一女的概率;
(Ⅱ)若消費金額不低于600元的網(wǎng)購者為“網(wǎng)購達(dá)人”,低于600元的網(wǎng)購者為“非網(wǎng)購達(dá)人”,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫右面2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.010的前提下認(rèn)為“是否為‘網(wǎng)購達(dá)人’與性別有關(guān)?”
女性男性總計
網(wǎng)購達(dá)人
非網(wǎng)購達(dá)人
總計
P(k2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879
附:
(${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{x^2}{m}-\frac{y^2}{8}=1$的離心率為$\sqrt{5}$,則實數(shù)m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.命題“若a2+b2=0,則a=0且b=0”的否命題是若a2+b2≠0,則a≠0或b≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知曲線x2-4y2=4,過點A(3,-1)且被點A平分的弦MN所在的直線方程為3x+4y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果a,b是異面直線,那么和a,b都垂直的直線( 。
A.有且只有一條B.有一條或兩條C.不存在或一條D.有無數(shù)多條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.等差數(shù)列{an}中,a3+a4+a5=12,則a4=( 。
A.2B.4C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),若對于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時,f(x)=log2(x+1),則f(-2017)=1.

查看答案和解析>>

同步練習(xí)冊答案