9.${(x+\frac{1}{{\sqrt{x}}})^n}$展開式中所有奇數(shù)項(xiàng)系數(shù)之和為1024,則展開式中各項(xiàng)系數(shù)的最大值是( 。
A.790B.680C.462D.330

分析 由題意可得:2n-1=1024,解得n=11.可得展開式中各項(xiàng)系數(shù)的最大值是${∁}_{11}^{5}$或${∁}_{11}^{6}$.

解答 解:由題意可得:2n-1=1024,解得n=11.
則展開式中各項(xiàng)系數(shù)的最大值是${∁}_{11}^{5}$或${∁}_{11}^{6}$,則${∁}_{11}^{5}$=$\frac{11×10×9×8×7}{5×4×3×2×1}$=462.
故選:C.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.給出下列命題:
(1)已知等比數(shù)列的前n項(xiàng)和為Sn,則Sn,S2n-Sn,S3n-S2n成等比數(shù)列
(2)在△ABC中,若sinA=cosB,則△ABC的形狀為直角三角形
(3)數(shù)據(jù)2,3,4,5的標(biāo)準(zhǔn)差是數(shù)據(jù)4,6,8,10的標(biāo)準(zhǔn)差的一半
(4)已知f(x)=2x2+5x+3,g(x)=x2+4x+2,則f(x)>g(x)
(5)已知0<x<$\frac{1}{3}$,則函數(shù)y=x(1-3x)的最大值是$\frac{1}{12}$.
則上述命題正確的有幾個(gè)(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知不等式ax2-3x+2>0的解集為{x|x<1或x>b}(a,b,c∈R)
(1)求a,b的值;
(2)解關(guān)于x不等式ax2-(ac+b)x+bc<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足$\frac{_{n}}{{a}_{n}}$=$\frac{1}{{2}^{n}}$,n∈N*,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=(n+2)an-1(n∈N*).
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Tn=$\frac{1}{{{a_1}{a_3}}}+\frac{1}{{{a_2}{a_4}}}+\frac{1}{{{a_3}{a_5}}}+…+\frac{1}{{{a_n}{a_{n+2}}}}$,求證:Tn<$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=ln(x+1)+a(x2-x),a≥0.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(2)若?x>0,f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.圖書館的書架有三層,第一層有3本不同的數(shù)學(xué)書,第二場(chǎng)有4本不同的語(yǔ)文書,第三層有5本不同的英語(yǔ)書,現(xiàn)從中任取一本書,共有( 。┓N不同的取法.
A.120B.16C.12D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在平面直角坐標(biāo)系xOy中,以點(diǎn)(1,0)為圓心且與直線2mx-y-4m+1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為(x-1)2+y2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知角α的終邊經(jīng)過(guò)點(diǎn)P(-3,-4),則cosα的值是( 。
A.-$\frac{4}{5}$B.$\frac{4}{3}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案