18.已知:圓C:(x-1)2+(y-2)2=25,直線l:(m+1)x+(2m+1)y-7m-4=0.
求:(1)求直線l恒過定點(diǎn)P的坐標(biāo);
(2)求證:不論m取何值,直線l與圓恒有兩個(gè)交點(diǎn);
(3)求直線l被圓M截得的弦長最小時(shí)的方程.

分析 (1)把已知直線方程變形,得到m(x+2y-7)+x+y-4=0,聯(lián)立$\left\{\begin{array}{l}{x+2y-7=0}\\{x+y-4=0}\end{array}\right.$求得定點(diǎn)P的坐標(biāo);
(2)把P的坐標(biāo)代入圓的方程,可得P在圓內(nèi)部,則直線l與圓恒有兩個(gè)交點(diǎn);
(3)由題意可知,當(dāng)直線l⊥CP時(shí),直線l被圓M截得的弦長最小,由此求得弦長最小時(shí)的直線方程.

解答 解:(1)由直線l:(m+1)x+(2m+1)y-7m-4=0,
得m(x+2y-7)+x+y-4=0,
聯(lián)立$\left\{\begin{array}{l}{x+2y-7=0}\\{x+y-4=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,
∴直線l恒過定點(diǎn)P的坐標(biāo)為(1,3);
證明:(2)∵(1-1)2+(3-2)2=1<25,
∴點(diǎn)P在圓C:(x-1)2+(y-2)2=25內(nèi),
故不論m取何值,直線l與圓恒有兩個(gè)交點(diǎn);
解:(3)當(dāng)直線l⊥CP時(shí),直線l被圓M截得的弦長最小,
∵P(1,3),C(1,2),
∴直線CP的斜率不存在,
則kl=0,直線l的方程為y=3.

點(diǎn)評 本題考查直線與圓的位置關(guān)系,考查了直線系方程的應(yīng)用,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{{x}^{2}}{{e}^{x}}$.
(1)求f(x)的極小值和極大值;
(2)當(dāng)曲線y=f(x)的切線l的斜率為正數(shù)時(shí),求l在x軸上的截距和取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+y2=4和直線l:14x+8y-23=0.
(1)求圓C1關(guān)于直線l對稱的圓C2的方程;
(2)設(shè)P為平面上的點(diǎn),且存在過點(diǎn)P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知⊙C經(jīng)過A(2,1),B(3,0),C($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$).
(1)求⊙C的方程;
(2)過原點(diǎn)作直線l交⊙C于M,N兩點(diǎn),若$\overrightarrow{OM}$=2$\overrightarrow{MN}$,求直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x-$\frac{1}{x}$+alnx(a∈R).
(1)若函數(shù)f(x)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)已知g(x)=$\frac{1}{2}$x2+(m-1)x+$\frac{1}{x}$,m≤-$\frac{3\sqrt{2}}{2}$,h(x)=f(x)+g(x),當(dāng)時(shí)a=1,h(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求h(x1)-h(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在平面直角坐標(biāo)系xOy中,直線x-y+1=0截以原點(diǎn)O為圓心的圓所得的弦長為$\sqrt{6}$,則圓O的方程為x2+y2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知矩陣A=$[\begin{array}{l}{a}&{2}\\&{1}\end{array}]$,若矩陣A屬于特征值3的一個(gè)特征向量為$\overrightarrow{a}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,求該矩陣的另一個(gè)特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=($\frac{1}{3}$)${\;}^{2{x}^{2}-3x+1}$的單調(diào)遞增區(qū)間為( 。
A.(1,+∞)B.(-∞,$\frac{3}{4}$]C.($\frac{1}{2}$,+∞)D.[$\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求方程2${\;}^{{x}^{2}+x}$=8x+1的根.

查看答案和解析>>

同步練習(xí)冊答案