求滿(mǎn)足下列條件的拋物線的標(biāo)準(zhǔn)方程,并求對(duì)應(yīng)拋物線的準(zhǔn)線方程.
(1) 過(guò)點(diǎn)(-3,2);
(2) 焦點(diǎn)在直線x-2y-4=0上.
解:(1) 設(shè)所求拋物線的方程為y2=-2px或x2=2py(p>0).
∵過(guò)點(diǎn)(-3,2),∴4=-2p(-3)或9=2p·2.∴p=或p=.∴所求拋物線的方程為y2=-x或x2=y,前者的準(zhǔn)線方程是x=,后者的準(zhǔn)線方程是y=-.
(2) 令x=0得y=-2,令y=0得x=4,∴拋物線的焦點(diǎn)為(4,0)或(0,-2).當(dāng)焦點(diǎn)為(4,0)時(shí),=4,∴p=8,此時(shí)拋物線的方程為y2=16x;焦點(diǎn)為(0,-2)時(shí),=2,∴p=4,此時(shí)拋物線的方程為x2=-8y.∴所求拋物線的方程為y2=16x或x2=-8y,對(duì)應(yīng)的準(zhǔn)線方程分別是x=-4,y=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知α=,回答下列問(wèn)題.
(1) 寫(xiě)出所有與α終邊相同的角;
(2) 寫(xiě)出在(-4π,2π)內(nèi)與α終邊相同的角;
(3) 若角β與α終邊相同,則是第幾象限的角?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓E:+y2=1(a>1)的上頂點(diǎn)為M(0,1),兩條過(guò)M的動(dòng)弦MA、MB滿(mǎn)足MA⊥MB.
(1) 當(dāng)坐標(biāo)原點(diǎn)到橢圓E的準(zhǔn)線距離最短時(shí),求橢圓E的方程;
(2) 若Rt△MAB面積的最大值為,求a;
(3) 對(duì)于給定的實(shí)數(shù)a(a>1),動(dòng)直線AB是否經(jīng)過(guò)一定點(diǎn)?如果經(jīng)過(guò),求出定點(diǎn)坐標(biāo)(用a表示);反之,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
拋物線y2=2px的準(zhǔn)線方程為x=-2,該拋物線上的每個(gè)點(diǎn)到準(zhǔn)線x=-2的距離都與到定點(diǎn)N的距離相等,圓N是以N為圓心,同時(shí)與直線l1:y=x和l2:y=-x 相切的圓,
(1) 求定點(diǎn)N的坐標(biāo);
(2) 是否存在一條直線l同時(shí)滿(mǎn)足下列條件:
① l分別與直線l1和l2交于A、B兩點(diǎn),且AB中點(diǎn)為E(4,1);
② l被圓N截得的弦長(zhǎng)為2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
下圖是拋物線形拱橋,當(dāng)水面在l時(shí),拱頂離水面2 m,水面寬4 m.水位下降1 m后,水面寬________ m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)F1、F2分別是橢圓=1(a>b>0)的左、右焦點(diǎn),若在直線x=上存在點(diǎn)P,使線段PF1的中垂線過(guò)點(diǎn)F2,則橢圓的離心率的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓的右焦點(diǎn)F,左、右準(zhǔn)線分別為l1:x=-m-1,l2:x=m+1,且l1、l2分別與直線y=x相交于A、B兩點(diǎn).
(1) 若離心率為,求橢圓的方程;
(2) 當(dāng)<7時(shí),求橢圓離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在各項(xiàng)為正的數(shù)列{an}中,數(shù)列的前n項(xiàng)和Sn滿(mǎn)足Sn=
(1) 求a1,a2,a3;
(2) 由(1)猜想數(shù)列{an}的通項(xiàng)公式;
(3) 求Sn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com