求函數(shù)y=x+
1-x2
的值域.
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用三角換元,化成三角函數(shù),再根據(jù)三角函數(shù)的值域求解
解答: 解:由y=x+
1-x2
,知1-x2≥0,得-1≤x≤1,
0≤
1-x2
≤1,令x=sinθ,設(shè)θ∈[-
π
2
,
π
2
]
,
1-x2
=cosθ
所以,原函數(shù)化為y=sinθ+cosθ=
2
sin(θ+
π
4

∵-
π
2
θ≤
π
2
,∴-
π
4
≤θ+
π
4
4

得sin(θ+
π
4
)的值域是[-
2
2
,1]
,則函數(shù)y=
2
sin(θ+
π
4
)
的值域是
[-1,
2
],故函數(shù)的值域是[-1,
2
]
點(diǎn)評(píng):本題考查復(fù)合函數(shù)求值域的問(wèn)題;也可以利用導(dǎo)數(shù),求單調(diào)區(qū)間判斷函數(shù)的單調(diào)性求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
3x+2y≤7
y-x≤1
x≥0
y≥0
,則u=3x+4y的最大值是( 。
A、11B、7C、4D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求y=
8
x2-5x+4
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=2py過(guò)點(diǎn)P(1,
1
2
)
,直線l交C于A,B兩點(diǎn),過(guò)點(diǎn)P且平行于y軸的直線分別與直線l和x軸相交于點(diǎn)M,N.
(1)求p的值;
(2)是否存在定點(diǎn)Q,當(dāng)直線l過(guò)點(diǎn)Q時(shí),△PAM與△PBN的面積相等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的值域:
(1)y=5 x2+2x+3;
(2)y=(
1
2
 -x2-2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)F(1,0),右頂點(diǎn)A,且|AF|=1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動(dòng)直線l:y=kx+m與橢圓C有且只有一個(gè)交點(diǎn)P,且與直線x=4交于點(diǎn)Q,問(wèn):是否存在一個(gè)定點(diǎn)M(t,0),使得
MP
MQ
=0
.若存在,求出點(diǎn)M坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且cos
A+C
2
=
1
2

(1)若a=3,b=
7
,求c的值;
(2)若f(A)=sinA(
3
cosA-sinA),求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos2x+2
3
sinxcosx(x∈R).
(Ⅰ)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且c=3,f(C)=2,若向量
m
=(1,sinA)與向量
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x<2},B={-1,0,2,3},則A∩B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案