9.已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)求$\frac{1}{S_1}+\frac{1}{S_2}$+$\frac{1}{S_3}$+…+$\frac{1}{{{S_{100}}}}$的值.

分析 (1)根據(jù)等差中項(xiàng)的性質(zhì)可知:a2=4,由=a2-a1=2 根據(jù)等差數(shù)列通項(xiàng)公式及前n項(xiàng)和公式即可求得數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn
(2)由(1)可知:Sn=n(n+1),$\frac{1}{S_n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,采用“裂項(xiàng)法”即可求得$\frac{1}{S_1}+\frac{1}{S_2}$+$\frac{1}{S_3}$+…+$\frac{1}{{{S_{100}}}}$的值.

解答 解:(1)由:等差數(shù)列性質(zhì)可知a1+a2+a3=3a2=12,
a2=4,…1分
由 d=a2-a1=2 …2分
∴數(shù)列{an}的通項(xiàng)公式為:an=a1+(n-1)d=2+2(n-1)=2n …4分
數(shù)列{an} 的前n 項(xiàng)和為:${S_n}=\frac{{n({a_1}+{a_n})}}{2}=\frac{n(2+2n)}{2}=n(n+1)$ …6分
(2)∵$\frac{1}{S_n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$ …8分
$\therefore$ $\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{{{S_{100}}}}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…(\frac{1}{100}-\frac{1}{101})$ …9分
=$1-\frac{1}{101}=\frac{100}{101}$ …10分
∴$\frac{1}{S_1}+\frac{1}{S_2}$+$\frac{1}{S_3}$+…+$\frac{1}{{{S_{100}}}}$=$\frac{100}{101}$.

點(diǎn)評 本題考查等差數(shù)列通項(xiàng)公式及前n項(xiàng)和公式的應(yīng)用,考查采用“裂項(xiàng)法”求數(shù)列的前n項(xiàng)和,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.對于數(shù)列{an},若${a_1}=a+\frac{1}{a}(a>0且a≠1),{a_{n+1}}={a_1}-\frac{1}{{{a_n}.}}$
(1)求a2,a2,a4,并猜想{an}的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在復(fù)平面內(nèi),復(fù)數(shù)z=(a2-2a)+(a2-a-2)i對應(yīng)的點(diǎn)在虛軸上,則實(shí)數(shù)a的值為(  )
A.0B.1C.2D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四面體P-ABC中,PA⊥平面ABC,AB=3,AC=4,BC=5,且D,E,F(xiàn),G分別為BC,PC,AB,PA的中點(diǎn).
(1)求證:AC⊥PB;
(2)求證:FG∥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.把1、2、3、4、5這五個數(shù)字組成無重復(fù)數(shù)字的五位數(shù),并把它們按由小到大的順序排列成一個數(shù)列.
(1)43251是這個數(shù)列的第幾項(xiàng)?
(2)求所有五位數(shù)的各位上的數(shù)字之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.心理學(xué)家分析視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取40名同學(xué)(男30名,女10名),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行答題,選擇情況如下表:單位(人)
幾何題代數(shù)題總計
男同學(xué)22830
女同學(xué)3710
總計251540
(Ⅰ)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(Ⅱ)經(jīng)過多次測試后,甲解答一道代數(shù)題所用時間在4~6分鐘,乙解答一道代數(shù)題所用時間在5~7分鐘,現(xiàn)甲乙各解同一道代數(shù)題,求甲比乙先解答完的概率.
下面臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.010.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{x}{ln(ax)+2}$(a≠0).
(1)若a=2,求曲線y=f(x)在點(diǎn)($\frac{1}{2}$,f($\frac{1}{2}$))處的切線方程;
(2)當(dāng)x∈[2,4]時,求f(x)的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=xlnx.
(1)求函數(shù)f(x)的最值;
(2)若k∈Z,且k<$\frac{f(x)+x}{x-1}$對任意的x>1恒成立,試求k的最大值;
(3)若方程f(x)+x2=mx2在區(qū)間[1,e2]內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知:-1+W+W2=0.
求W1997-W1998-W1999+W2000-W2001-W2002+W2003-W2004-W2005的值.

查看答案和解析>>

同步練習(xí)冊答案