【題目】已知A={x|x+1>0},B={﹣2,﹣1,0,1},則(RA)∩B=( 。
A.{﹣2,﹣1}
B.{﹣2}
C.{﹣2,0,1}
D.{0,1}
【答案】A
【解析】解:∵A={x|x+1>0}={x|x>﹣1},
∴CUA={x|x≤﹣1},
∴(RA)∩B={x|x≤﹣1}∩{﹣2,﹣1,0,1}={﹣2,﹣1}
故選A.
【考點(diǎn)精析】本題主要考查了交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí)點(diǎn),需要掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題“若x>﹣3,則x>﹣6”以及它的逆命題、否命題、逆否命題中,真命題有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x||x﹣a|<1,x∈R},B={x||x﹣b|>2,x∈R}.若AB,則實(shí)數(shù)a,b必滿足( 。
A.|a+b|≤3
B.|a+b|≥3
C.|a﹣b|≤3
D.|a﹣b|≥3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:f(x)>1﹣f′(x),f(0)=0,f′(x)是f(x)的導(dǎo)函數(shù),則不等式exf(x)>ex﹣1(其中e為自然對(duì)數(shù)的底數(shù))的解集為( )
A.(﹣∞,﹣1)∪(0,+∞)
B.(0,+∞)
C.(﹣∞,0)∪(1,+∞)
D.(﹣1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|.
(1)求不等式f(x)+x2﹣4>0的解集;
(2)設(shè)g(x)=﹣|x+7|+3m,若關(guān)于x的不等式f(x)<g(x)的解集非空,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,“a4 , a12是方程x2+3x+1=0的兩根”是“a8=±1”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果U={1,2,3,4,5},M={1,2,3},N={2,3,5},那么(CUM)∩N等于( 。
A.φ
B.{1,3}
C.{4}
D.{5}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=Z,集合A={3,4},A∪B={1,2,3,4},那么(UA)∩B=( )
A.{1,2}
B.{3,4}
C.{1,2,3,4}
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com