分析 先求圓的半徑,四邊形PACB的最小面積是2,轉(zhuǎn)化為△PBC的面積是1,求出切線長,再求PC的距離也就是圓心到直線的距離,可解k的值.
解答 解:圓C:x2-2x+y2=0的圓心(1,0),半徑是r=1,由圓的性質(zhì)知:S四邊形PACB=2S△PBC,
∵四邊形PACB的最小面積是2,
∴S△PBC的最小值=1=$\frac{1}{2}$rd(d是切線長),∴d最小值=2
圓心到直線的距離就是PC的最小值,$\sqrt{1+4}$=$\frac{|k+3|}{\sqrt{{k}^{2}+1}}$
∴k=2或k=-$\frac{1}{2}$,
∵k>0,∴k=2.
故答案為2.
點(diǎn)評(píng) 本題考查直線和圓的方程的應(yīng)用,考查點(diǎn)到直線的距離公式,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=(-2x+3)ex | B. | f(x)=e-2x+3 | ||
C. | $f(x)={e^{-{x^2}+3x+1}}$ | D. | $f(x)=(-2x+3){e^{-{x^2}+3x+1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k<10? | B. | k>10? | C. | k<11? | D. | k>11? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+6π | B. | 4+12π | C. | 8+6π | D. | 8+12π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{4}{5}$ | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com