如圖,梯形ABCD中,AB∥CD,且AB=2CD,對(duì)角線AC、DB相交于點(diǎn)O.若
AD
=
a
,
AB
=
b
,
OC
=(  )
A、
a
3
-
b
6
B、
a
3
+
b
6
C、
2
a
3
+
b
3
D、
2
a
3
-
b
3
考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:先證明△DOC∽△BOA,然后根據(jù)AB=2CD得到AO與AD的比例關(guān)系,最后轉(zhuǎn)化成用基底表示即可.
解答: 解:∵AB∥CD,AB=2CD,
∴△DOC∽△BOA且AO=2OC,
AO
=2
OC
=
2
3
AC
,∴
OC
=
1
3
AC
,而
AC
=
AD
+
DC
=
AD
+
1
2
AB
=
a
+
1
2
b
,
OC
=
1
3
AC
=
1
3
a
+
1
2
b
)=
1
3
a
+
1
6
b
,
故選B.
點(diǎn)評(píng):本題主要考查了向量加減混合運(yùn)算及其幾何意義,解題的關(guān)鍵是弄清AO與AD的比例關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=
π
6
,an∈(-
π
2
,
π
2
),且tanan+1•cosan=1(n∈N*).
(Ⅰ)證明數(shù)列{tan2an}是等差數(shù)列,并求數(shù)列{tan2an}的前n項(xiàng)和;
(Ⅱ)求正整數(shù)m,使得11sina1•sina2•…•sinam=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),若在區(qū)間(-2,2)內(nèi)有且僅有一個(gè)x0,使得f(x0)=1成立,則稱函數(shù)f(x)具有性質(zhì)M.
(Ⅰ)若f(x)=sinx+2,判斷f(x)是否具有性質(zhì)M,說明理由;
(Ⅱ)若函數(shù)f(x)=x2+2mx+2m+1具有性質(zhì)M,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(-4,4)作直線l與圓O:x2+y2=4相交于A、B兩點(diǎn).
(Ⅰ)若直線l變動(dòng)時(shí),求AB中點(diǎn)M的軌跡方程;
(Ⅱ)若直線l的斜率為-
1
2
,求弦AB的長;
(Ⅲ)若一直線與圓O相 切于點(diǎn)Q且與x軸的正半軸,y軸的正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+(a-2)x+1為偶函數(shù),g(x)=
x-3+b
x2+2
為奇函數(shù),則
1
ab
a
1
b
的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線的一條漸近線方程是y=-
3
4
x,且過點(diǎn)(2,3),求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將長方體截去一個(gè)四棱錐,得到的幾何體如圖所示,則該幾何體的左視圖為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b,c>d,則下列不等式成立的是( 。
A、b+d<a+c
B、ac>bd
C、
a
c
d
b
D、a-c>b-d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)
425
625
;     
(2)[-2×(
3
7
)0]2×[(-2)3]
4
3
;
(3)已知x+x-1=3,求
x
1
2
+x-
1
2
x2+x-2+3
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案