11.二項(xiàng)式(2$\sqrt{x}$-$\frac{a}{\sqrt{x}}$)n展開式中所有二項(xiàng)式系數(shù)和為64,展開式中的常數(shù)項(xiàng)為-160,則a=1.

分析 由題意可得二項(xiàng)式(2$\sqrt{x}$-$\frac{a}{\sqrt{x}}$)n展開的二項(xiàng)式系數(shù)和為64為2n=64,求得n=6,利用二項(xiàng)展開式(2$\sqrt{x}$-$\frac{a}{\sqrt{x}}$)n的通項(xiàng)公式,再令x的冪指數(shù)等于零,求得r的值,可得二項(xiàng)展開式(2$\sqrt{x}$-$\frac{a}{\sqrt{x}}$)n的常數(shù)項(xiàng)為-160即可求出a的值.

解答 解:二項(xiàng)式(2$\sqrt{x}$-$\frac{a}{\sqrt{x}}$)n展開的二項(xiàng)式系數(shù)和為64,即2n=64,可得n=6.
二項(xiàng)展開式(2$\sqrt{x}$-$\frac{a}{\sqrt{x}}$)n的通項(xiàng)公式Tr+1=${C}_{6}^{r}{2}^{6-r}{x}^{\frac{6-r}{2}}(-a)^{r}{x}^{-\frac{r}{2}}$.
令$\frac{6-r}{2}-\frac{r}{2}=0$可得常數(shù)項(xiàng),此時(shí)r=3.
那么.常數(shù)項(xiàng)為${C}_{6}^{3}{2}^{3}(-a)^{3}$=-160.
解得:a=1.
故答案為:1.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若|$\frac{x}{x+1}$|>$\frac{x}{x+1}$則實(shí)數(shù)x的取值范圍是( 。
A.(-1,0)B.[-1,0]C.(-∞,-1)∪(0,+∞)D.(-∞,-1]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.甲、乙兩臺自動車床生產(chǎn)同種標(biāo)準(zhǔn)件,ξ表示甲機(jī)床生產(chǎn)1000件產(chǎn)品中的次品數(shù),η表示乙機(jī)床生產(chǎn)1000件產(chǎn)品中的次品數(shù),經(jīng)過一段時(shí)間的測試,ξ與η的分布列分別為:
ζ0123
P0.70.10.10.1
η0123
p0.50.30.20
據(jù)此判定( 。
A.甲比乙質(zhì)量好B.乙比甲質(zhì)量好C.甲與乙質(zhì)量相同D.無法判定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.實(shí)驗(yàn)杯足球賽采用七人制淘汰賽規(guī)則,某場比賽中一班與二班在常規(guī)時(shí)間內(nèi)戰(zhàn)平,直接進(jìn)入點(diǎn)球決勝環(huán)節(jié),在點(diǎn)球決勝環(huán)節(jié)中,雙方首先輪流罰點(diǎn)球三輪,罰中更多點(diǎn)球的球隊(duì)獲勝;若雙方在三輪罰球中未分勝負(fù),則需要進(jìn)行一對一的點(diǎn)球決勝,即雙方各派出一名隊(duì)員罰點(diǎn)球,直至分出勝負(fù);在前三輪罰球中,若某一時(shí)刻勝負(fù)已分,尚未出場的隊(duì)員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無需出場),由于一班同學(xué)平時(shí)踢球熱情較高,每位隊(duì)員罰點(diǎn)球的命中率都能達(dá)到0.8,而二班隊(duì)員的點(diǎn)球命中率只有0.5,比賽時(shí)通過抽簽決定一班在每一輪都先罰球.
(1)定義事件A為“一班第三位同學(xué)沒能出場罰球”,求事件A發(fā)生的概率;
(2)若兩隊(duì)在前三輪點(diǎn)球結(jié)束后打平,則進(jìn)入一對一點(diǎn)球決勝,一對一點(diǎn)球決勝由沒有在之前點(diǎn)球大戰(zhàn)中出場過的隊(duì)員主罰點(diǎn)球,若在一對一點(diǎn)球決勝的某一輪中,某隊(duì)隊(duì)員射入點(diǎn)球且另一隊(duì)隊(duì)員未能射入,則比賽結(jié)束;若兩名隊(duì)員均射入或者均射失點(diǎn)球,則進(jìn)行下一輪比賽.若直至雙方場上每名隊(duì)員都已經(jīng)出場罰球,則比賽亦結(jié)束,雙方用過抽簽決定勝負(fù),以隨機(jī)變量X記錄雙方進(jìn)行一對一點(diǎn)球決勝的輪數(shù),求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=ax3+x2+bx+2中a,b為參數(shù),已知曲線y=f(x)在(1,f(1))處的切線方程為y=6x-1,則f(-1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,若輸入的x=2017,則輸出的i=( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={a1,a2,a3,a4},集合B={b1,b2},其中ai,bi(i=1,2,3,4,j=1,2)均為實(shí)數(shù).
(1)從集合A到集合B能構(gòu)成多少個(gè)不同的映射?
(2)從集合B到集合A能構(gòu)成多少個(gè)不同的映射?
(3)能構(gòu)成多少個(gè)以集合A為定義域,集合B為值域的不同函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.調(diào)查某醫(yī)院某段時(shí)間內(nèi)嬰兒出生的時(shí)間與性別的關(guān)系,得到下面的數(shù)據(jù)表:
晚上白天合計(jì)
男嬰243155
女嬰82634
合計(jì)325789
你認(rèn)為嬰兒的性別與出生時(shí)間有關(guān)系的把握為( 。
A.80%B.90%C.95%D.99%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)復(fù)數(shù)z滿足,(z-2i)(2-i)=5,則$\overline{z}$=( 。
A.2+3iB.2-3iC.3+2iD.3-2i

查看答案和解析>>

同步練習(xí)冊答案