如圖,三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分別交AC、PC于D、E兩點(diǎn),又PB=BC,PA=AB.
(Ⅰ)求證:PC⊥平面BDE;
(Ⅱ)若點(diǎn)Q是線段PA上任一點(diǎn),求證:BD⊥DQ;
(Ⅲ)求線段PA上點(diǎn)Q的位置,使得PC平面BDQ.
(Ⅰ)證明:由等腰三角形PBC,得BE⊥PC
又DE垂直平分PC,
∴DE⊥PC
∴PC⊥平面BDE,(4分)

(Ⅱ)由(Ⅰ),有PC⊥BD
因?yàn)镻A⊥底面ABC,所以PA⊥BD
BD⊥平面PAC,所以點(diǎn)Q是線段PA上任一點(diǎn)都有
BD⊥DQ(8分)

(Ⅲ)不妨令PA=AB=1,有PB=BC=
2

計(jì)算得AD=
3
3
=
1
3
AC所以點(diǎn)Q在線段PA的
1
3
處,
即AQ=
1
3
AP時(shí),PCQD,從而PC平面BDQ.(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥CD,AD=CD,DB平分∠ADC,E為PC的中點(diǎn).求證:
(1)PA平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四棱錐P-ABCD,底面是邊長(zhǎng)為2的正方形,PA⊥底面ABCD,PA=2
2
,求直線PA與底面ABCD所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,正方形ABCD和矩形ACEF所在的平面相互垂直,已知AB=2,AF=
2

(I)求證:EO⊥平面BDF;
(II)求二面角A-DF-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,每個(gè)側(cè)面均為正方形,D為底邊AB的中點(diǎn),E為側(cè)棱CC1的中點(diǎn),AB1與A1B的交點(diǎn)為O.
(1)求證:CD平面A1EB;
(2)求證:AB1⊥平面A1EB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐S?ABCD中,底面ABCD是正方形,SA⊥面ABCD,且SA=AB,M、N分別為SB、SD中點(diǎn),求證:
(1)DB平面AMN.
(2)SC⊥平面AMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD為矩形,AD⊥平面ABEAE=EB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE,BD∩AC=G.
(1)求證:AE⊥平面BCE;
(2)求證:AE平面BFD;
(3)求四面體BCDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AB=AC=2AA1=2,sin∠ABC=
3
2
,D是BC的中點(diǎn).
(1)求證:A1B平面AC1D;
(2)求證:平面AC1D⊥平面B1BCC1;
(3)求三棱錐B-AC1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正三棱柱ABC-A1B1C1中,AB=
2
AA1
,D是A1B1的中點(diǎn),點(diǎn)E在A1C1上,且DE⊥AE.
(1)證明:平面ADE⊥平面ACC1A1
(2)求直線AD和平面ABC1所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案