分析 (1)由f(0)=0可得c=0,由函數(shù)對于任意x∈R都有f(-$\frac{1}{2}$+x)=f(-$\frac{1}{2}$-x)可得函數(shù)f(x)的對稱軸為x=-$\frac{1}{2}$,從而可得a=b,由f(x)≥x,可得△=(b-1)2≤0,進(jìn)而得到答案.
(2)由(1)可得g(x)的解析式,分析函數(shù)的單調(diào)性,結(jié)合零點(diǎn)存在定理進(jìn)行判斷函數(shù)g(x)的零點(diǎn)情況.
解答 (1)解:∵f(0)=0,∴c=0.(1分)
∵對于任意x∈R都有f(-$\frac{1}{2}$+x)=f(-$\frac{1}{2}$-x),
∴函數(shù)f(x)的對稱軸為x=-$\frac{1}{2}$,即-$\frac{2a}$=-$\frac{1}{2}$,得a=b.(2分)
又f(x)≥x,即ax2+(b-1)x≥0對于任意x∈R都成立,
∴a>0,且△=(b-1)2≤0.
∵(b-1)2≥0,
∴b=1,a=1.
∴f(x)=x2+x.(4分)
(2)解:g(x)=f(x)-|λx-1|=$\left\{\begin{array}{l}{x}^{2}+(1-λ)x+1,x≥\frac{1}{λ}\\{x}^{2}+(1+λ)x+1,x<\frac{1}{λ}\end{array}\right.$(5分)
①當(dāng)x≥$\frac{1}{λ}$時(shí),函數(shù)g(x)=x2+(1-λ)x+1的對稱軸為x=$\frac{λ-1}{2}$,
若$\frac{λ-1}{2}$≤$\frac{1}{λ}$,即0<λ≤2,函數(shù)g(x)在($\frac{1}{λ}$,+∞)上單調(diào)遞增;(6分)
則函數(shù)g(x)在區(qū)間(0,1)上單調(diào)遞增,
又g(0)=-1<0,g(1)=2-|λ-1|>0,
故函數(shù)g(x)在區(qū)間(0,1)上只有一個(gè)零點(diǎn).(8分)
②若$\frac{λ-1}{2}$>$\frac{1}{λ}$,即λ>2,函數(shù)g(x)在($\frac{λ-1}{2}$,+∞)上單調(diào)遞增,在($\frac{1}{λ}$,$\frac{λ-1}{2}$)上單調(diào)遞減.(9分)
此時(shí)$\frac{1}{λ}$<$\frac{1}{2}$<1,而g(0)=-1<0,g($\frac{1}{λ}$)=$\frac{1}{{λ}^{2}}$+$\frac{1}{λ}$>0,g(1)=2-|λ-1|,
(。┤2<λ≤3,由于$\frac{1}{λ}$<$\frac{λ-1}{2}$≤1,
且g($\frac{λ-1}{2}$)=($\frac{λ-1}{2}$)2+(1-λ)•$\frac{λ-1}{2}$+1=-$\frac{(λ-1)^{2}}{4}$+1≥0,
此時(shí),函數(shù)g(x)在區(qū)間(0,1)上只有一個(gè)零點(diǎn);(11分)
(ⅱ)若λ>3,由于$\frac{λ-1}{2}$>1且g(1)=2-|λ-1|<0,此時(shí),函數(shù)g(x)在區(qū)間(0,1)
上有兩個(gè)不同的零點(diǎn).(13分)
綜上所述,當(dāng)λ>3時(shí),函數(shù)g(x)在區(qū)間(0,1)上有兩個(gè)不同的零點(diǎn).(14分)
點(diǎn)評 本題主要考查了函數(shù)的解析式的求解,函數(shù)的單調(diào)區(qū)間,零點(diǎn)存在的判定定理,考查了分類討論思想的在解題中的應(yīng)用.屬于綜合性較強(qiáng)的試題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥α,n⊥β,m⊥n,則α⊥β | B. | 若m∥α,n⊥β,m∥n,則α⊥β | ||
C. | 若m∥n,m∥α,n∥β,則α∥β | D. | 若m?α,n?α,m∥β,n∥β,則α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$尺 | B. | $\frac{8}{15}$尺 | C. | $\frac{16}{31}$尺 | D. | $\frac{16}{29}$尺 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{{e}^{2}}$,+∞) | B. | (-1,$\frac{1}{{e}^{2}}$] | C. | [-$\frac{1}{{e}^{2}}$,1) | D. | (-∞,-$\frac{1}{{e}^{2}}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com