【題目】某工廠對一批產(chǎn)品進行了抽樣檢測.右圖是根據(jù)抽樣檢測后的(產(chǎn)品凈重,單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,下列命題中:①樣本中凈重大于或等于98克并且小于102克的產(chǎn)品的個數(shù)是60;②樣本的眾數(shù)是101;③樣本的中位數(shù)是 ; ④樣本的平均數(shù)是101.3.
正確命題的代號是(寫出所有正確命題的代號).

【答案】①②③④
【解析】解:由題意可知:樣本中凈重小于100克的產(chǎn)品的頻率=(0.05+0.1)×2=0.3,

∴樣本容量= ,

∴樣本中凈重在[98,102)的產(chǎn)品個數(shù)=(0.1+0.15)×2×120=60.

由圖知,最高小矩形的中點橫坐標是101,故眾數(shù)是101,

又最左邊的兩個小矩形的面積和是0.3,最右邊的兩個小矩形的面積和是0.4,故中位數(shù)100+ = ,

樣本的平均數(shù)是2(97×0.05+99×0.1+101×0.15+103×0.125+105×0.075)=101.3

所以答案是:①②③④.

【考點精析】掌握頻率分布直方圖和平均數(shù)、中位數(shù)、眾數(shù)是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的是( )
A.斜率相等的兩條直線一定平行
B.若兩條不重合的直線l1 , l2平行,則它們的斜率一定相等
C.直線l1x=1與直線l2x=2不平行
D.直線l1:( -1)xy=2與直線l2x+( +1)y=3平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的離心率為 ,右焦點為( ,0)
(1)求橢圓C的方程;
(2)若過原點 作兩條互相垂直的射線,與橢圓交于A,B兩點,求證:點O到直線AB的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3﹣ax+1在區(qū)間(1,+∞)內(nèi)是增函數(shù),則實數(shù)a的取值范圍是(
A.a<3
B.a>3
C.a≤3
D.a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體 中, 分別為 的中點.

(1)求證:平面 ⊥平面 ;
(2)當點 上運動時,是否都有 平面 ,證明你的結(jié)論;
(3)若 的中點,試判斷 與平面 是否垂直?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如表:

價格x(元/kg)

10

15

20

25

30

日需求量y(kg)

11

10

8

6

5


(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,當價格x=40元/kg時,日需求量y的預(yù)測值為多少?
參考公式:線性回歸方程 ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(x0 , y0)在x2+y2=r2(r>0)外,則直線x0x+y0y=r2與圓x2+y2=r2的位置關(guān)系為( )
A.相交
B.相切
C.相離
D.相交、相切、相離三種情況均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方體ABCD﹣A1B1C1D1中,底面ABCD為正方形,DD1⊥平面ABCD,AB=4,AA1=2,點E1在棱C1D1上,且D1E1=3.

(Ⅰ)在棱CD上確定一點E,使得直線EE1∥平面D1DB,并寫出證明過程;
(Ⅱ)若動點F在正方形ABCD內(nèi),且AF=2,請說明點F的軌跡,探求E1F長度的最小值并求此時直線E1F與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,點D是AB的中點.求證:

(1)AC⊥BC1;
(2)AC1∥平面B1CD.

查看答案和解析>>

同步練習(xí)冊答案