18.集合M={(x,y)|x+y≤1,y≤x,y≥-1},N={(x,y)|(x-2)2+y2=r2,r>0},若M∩N≠∅,則r的取值范圍為(  )
A.$[{\frac{{\sqrt{2}}}{2},3}]$B.$[{1,\sqrt{10}}]$C.$[{\frac{{\sqrt{2}}}{2},\sqrt{10}}]$D.$[{1,\frac{{\sqrt{10}}}{2}}]$

分析 由題意畫出圖形,結合點到直線的距離公式及兩點間的距離公式得答案.

解答 解:畫出集合M={(x,y)|x+y≤1,y≤x,y≥-1}表示的平面區(qū)域如圖,

集合N={(x,y)|(x-2)2+y2=r2,r>0}表示以(2,0)為圓心,半徑為r的圓.
聯(lián)立$\left\{\begin{array}{l}{y=x}\\{y=-1}\end{array}\right.$,解得A(-1,-1),
∵點(2,0)到直線x+y-1=0的距離d=$\frac{|1×2-1|}{\sqrt{2}}=\frac{\sqrt{2}}{2}$,
|PA|=$\sqrt{(-1-2)^{2}+(-1-0)^{2}}=\sqrt{10}$.
∴若M∩N≠∅,則r的取值范圍為[$\frac{\sqrt{2}}{2},\sqrt{10}$].
故選:C.

點評 本題考查交集及其運算,考查數(shù)形結合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.在四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=3,AD=2$\sqrt{2}$,∠ABC=45°,P點在底面ABCD內(nèi)的射影E在線段AB上,且PE=2,BE=2EA,F(xiàn)為AD的中點,M在線段CD上,且CM=λCD.
(Ⅰ)當λ=$\frac{2}{3}$時,證明:平面PFM⊥平面PAB;
(Ⅱ)當平面PAM與平面ABCD所成的二面角的正弦值為$\frac{{2\sqrt{5}}}{5}$時,求四棱錐P-ABCM的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.我國古代數(shù)學名著《九章算術》第三章“衰分”介紹比例分配:“衰分”是按比例遞減分配的意思,通常稱遞減的比例(即百分比)為“衰分比”.如:甲、乙、丙、丁分別得100,60,36,21.6個單位,遞減的比例是40%,今共有糧食m(m>0)石,按甲、乙、丙、丁的順序進行“衰分”,已知丁分得2石,乙、丙所得之和為40石,則衰分比與m的值分別是( 。
A.75%,170B.75%,340C.25%,170D.25%,340

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.經(jīng)統(tǒng)計,2015年,某公路在部分界樁附近發(fā)生的交通事故次數(shù)如下表:
界樁公里數(shù)  100110051010102010251049
交通事故數(shù)  804035333230
把界樁公里數(shù)1001記為x=1,公里數(shù)1005記為x=5,…,數(shù)據(jù)繪成的散點圖如圖所示,以x為解釋變量、交通事故數(shù)y為預報變量,建立了兩個不同的回歸方程y(1)=29.9+50.2×$\frac{1}{x}$和y(2)=33.9+125.9e-x表述x,y二者之間的關系.
(Ⅰ)計算R2的值,判斷這兩個回歸方程中哪個擬合效果更好?并解釋更好的這個擬合所對R2的意義;
(Ⅱ)若保險公司在每次交通事故中理賠60萬元的概率為0.01,理賠2萬元的概率為0.19,理賠0.2萬元的概率為0.8,利用你得到的擬合效果更好的這一個回歸方程,試預報這一年在界樁1040公里附近處發(fā)生的交通事故的理賠費(理賠費精確到0.1萬元).
附:對回歸直線y=$\widehat{α}$+$\widehat{β}$x,有R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.
一些量的計算值:
    $\overline{y}$       $\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$ $\sum_{i=1}^{6}({y}_{i}-{\widehat{{y}_{i}}}^{(1)})^{2}$ $\sum_{i=1}^{6}({y}_{i}-{\widehat{{y}_{i}}}^{(2)})^{2}$
 41.7        1821 0.875 48.4
表中:${\widehat{{y}_{i}}}^{(1)}$=29.9+50.2×$\frac{1}{{x}_{i}}$,${\widehat{{y}_{i}}}^{(2)}$=33.9+125.9e${\;}^{-{x}_{i}}$,$\frac{1}{40}$=0.025,e-40≈0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,則輸出的k=( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在三棱錐P-ABC中,PA⊥平面ABC,PA=1,AB=AC=$\sqrt{3}$,∠BAC=120°,D為棱BC上一個動點,設直線PD與平面ABC所成的角θ,則θ不大于45°的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f0(x)=sinx+cosx,f1(x)=f′0(x),f2(x)=f′1(x),…fn+1(x)=f′n(x),n∈N,那么f2017=(  )
A.cosx-sinxB.sinx-cosxC.sinx+cosxD.-sinx-cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知z1=1-i,z2=2+2i.
(1)求z1•z2;
(2)若z=$\frac{{z}_{1}•{z}_{2}}{{z}_{1}+{z}_{2}}$,求z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.我們常用函數(shù)y=f(x)的函數(shù)值的改變量與自變量的改變量的比值來表示平均變化率,當自變量x由x0改變到x+x0時,函數(shù)值的改變量△y等于( 。
A.f(x0+△x)B.f(x0)+△xC.f(x0)•△xD.f(x0+△x)-f(x0

查看答案和解析>>

同步練習冊答案