分析 (Ⅰ)由$|{AB}|=4,|{{F_1}{F_2}}|=2\sqrt{3}$,求出a,c,然后求解橢圓的離心率.
(Ⅱ)設(shè)D(x1,y1),C(x2,y2)通過$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+4{y^2}=4}\end{array}}\right.$,結(jié)合△>0推出m2<4k2+1,利用韋達(dá)定理|CM|=|DN|.求出直線的斜率,然后表示出$\frac{k_1}{k_2}$,然后求解它的范圍即可.
解答 解:(Ⅰ)由$|{AB}|=4,|{{F_1}{F_2}}|=2\sqrt{3}$,可知$a=2,c=\sqrt{3}$即橢圓方程為$\frac{x^2}{4}+{y^2}=1$…..….(2分)
離心率為$e=\frac{{\sqrt{3}}}{2}$….….(4分)
(Ⅱ)設(shè)D(x1,y1),C(x2,y2)易知$A({-2,0}),B({2,0}),N({0,m}),M({-\frac{m}{k},0})$….(5分)
由$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+4{y^2}=4}\end{array}}\right.$消去y整理得:(1+4k2)x2+8kmx+4m2-4=0,
由△>0⇒4k2-m2+1>0即m2<4k2+1,${x_1}+{x_2}=\frac{-8km}{{1+4{k^2}}},{x_1}{x_2}=\frac{{4{m^2}-4}}{{1+4{k^2}}}$…(6分)
且|CM|=|DN|即$\overrightarrow{CM}=\overrightarrow{ND}$可知${x_1}+{x_2}=-\frac{m}{k}$,即$\frac{-8km}{{1+4{k^2}}}=-\frac{m}{k}$,解得$k=\frac{1}{2}$….(8分)
${({\frac{k_1}{k_2}})^2}=\frac{{y_1^2{{({{x_2}-2})}^2}}}{{y_2^2{{({{x_1}+2})}^2}}}=\frac{{\frac{4-x_1^2}{4}{{({{x_2}-2})}^2}}}{{\frac{4-x_2^2}{4}{{({{x_1}+2})}^2}}}=\frac{{({2-{x_1}})({2-{x_2}})}}{{({2+{x_1}})({2+{x_2}})}}=\frac{{4-2({{x_1}+{x_2}})+{x_1}{x_2}}}{{4+2({{x_1}+{x_2}})+{x_1}{x_2}}}={({\frac{m+1}{m-1}})^2}$,
由題知,點(diǎn)M、F1的橫坐標(biāo)${x_M}≥{x_{F_1}}$,有$-2m≥-\sqrt{3}$,
易知$m∈({0,\frac{{\sqrt{3}}}{2}}]$滿足m2<2,
即$\frac{k_1}{k_2}=-\frac{m+1}{m-1}=-1+\frac{2}{1-m}$,則$\frac{k_1}{k_2}∈({1,7+4\sqrt{3}}]$…..(12分)
點(diǎn)評(píng) 本題考查橢圓的簡單性質(zhì)的應(yīng)用,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{5}$,+∞) | B. | [$\frac{1}{5}$,+∞) | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x-\sqrt{2}y=0$ | B. | $\sqrt{2}x-y=0$ | C. | $\sqrt{2}x±y=0$ | D. | $x±\sqrt{2}y=0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{16}$ | B. | $-\frac{2}{5}$ | C. | $\frac{11}{16}$ | D. | $\frac{13}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com