5.在銳角三角形△ABC中,a,b,c分別是角A,B,C的對邊,(a+b+c)(a+c-b)=$({2+\sqrt{3}})ac$,則cosA+sinC的取值范圍為( 。
A.$({\frac{3}{2},\sqrt{3}})$B.$({\frac{{\sqrt{3}}}{2},\frac{3}{2}})$C.$({\frac{3}{2},\sqrt{3}}]$D.$({\frac{{\sqrt{3}}}{2},\sqrt{3}})$

分析 由已知利用余弦定理可求cosB,結(jié)合B是銳角,可求B,進而可得$C=\frac{5π}{6}-A$,利用三角函數(shù)恒等變換的應(yīng)用化簡可求cosA+sinC=$\sqrt{3}sin({A+\frac{π}{3}})$,由已知可求范圍$\left\{\begin{array}{l}0<A<\frac{π}{2}\\ 0<\frac{5π}{6}-A<\frac{π}{2}\end{array}\right.$,利用正弦函數(shù)的圖象和性質(zhì)即可計算得解.

解答 (本題滿分為12分)
解:由:(a+b+c)(a+c-b)=$({2+\sqrt{3}})ac$,可得:${a^2}+{c^2}-{b^2}=\sqrt{3}ac$,
根據(jù)余弦定理得:$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{{\sqrt{3}}}{2}$,
∵B是銳角,
∴$B=\frac{π}{6}$.
∴$A+C=\frac{5π}{6}$,即$C=\frac{5π}{6}-A$,
$\begin{array}{l}∴cosA+sinC=cosA+sin({\frac{5π}{6}-A})\\=cosA+sin\frac{5π}{6}cosA-cos\frac{5π}{6}sinA=\frac{{\sqrt{3}}}{2}sinA+\frac{3}{2}cosA\end{array}$
=$\sqrt{3}sin({A+\frac{π}{3}})$,
又△ABC是銳角三角形,
∴$\left\{\begin{array}{l}0<A<\frac{π}{2}\\ 0<C<\frac{π}{2}\end{array}\right.$,即$\left\{\begin{array}{l}0<A<\frac{π}{2}\\ 0<\frac{5π}{6}-A<\frac{π}{2}\end{array}\right.$,
∴$\frac{π}{3}<A<\frac{π}{2}$,
∴$\frac{2π}{3}<A+\frac{π}{3}<\frac{5π}{6}$,
∴$cosA+sinC∈({\frac{{\sqrt{3}}}{2},\frac{3}{2}})$.
故選:B.

點評 本題主要考查了余弦定理,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)g(x)=$\left\{\begin{array}{l}{-x+1(x<0)}\\{{x}^{2}-1(x≥0)}\end{array}\right.$,若函數(shù)y=g(g(x))-2m有3個不同的零點,則實數(shù)m的取值范圍是($\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若a,b∈R,且ab>0,則$\frac{a}$+$\frac{a}$的最小值是(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若行列式$|{\begin{array}{l}1&2&4\\{cos\frac{x}{2}}&{sin\frac{x}{2}}&0\\{sin\frac{x}{2}}&{cos\frac{x}{2}}&8\end{array}}|$中元素4的代數(shù)余子式的值為$\frac{1}{2}$,則實數(shù)x的取值集合為$\{x|x=2kπ±\frac{π}{3},k∈Z\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知棱長為$\sqrt{3}$的正方體ABCD-A1B1C1D1內(nèi)部有一圓柱,此圓柱恰好以直線AC1為軸,則該圓柱側(cè)面積的最大值為( 。
A.$\frac{{9\sqrt{2}}}{8}π$B.$\frac{{9\sqrt{2}}}{4}π$C.$2\sqrt{3}π$D.$3\sqrt{2}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在各項均為正數(shù)的等比數(shù)列{an}中,若am•am+2=2am+1(m∈N),數(shù)列{an}的前n項積為Tm,且T2m+1=128,則m的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,Rt△ABC中,P是斜邊BC上一點,且滿足:$\overrightarrow{BP}=\frac{1}{2}\overrightarrow{PC}$,點M,N在過點P的直線上,若$\overrightarrow{AM}=λ\overrightarrow{AB},\overrightarrow{AN}=μ\overrightarrow{AC}$,(λ,μ>0),則λ+2μ的最小值為( 。
A.2B.$\frac{8}{3}$C.3D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖,已知點D為△ABC的邊BC上一點,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,En(n∈N+)為邊AC上的點,滿足$\overrightarrow{{E}_{n}A}$=$\frac{1}{4}$an+1,$\overrightarrow{{E}_{n}B}$=(4an+3)$\overrightarrow{{E}_{n}D}$,其中實數(shù)列{an}中an>0,a1=1,則{an}的通項公式為( 。
A.3•2n-1-2B.2n-1C.4n-2D.2•4n-1-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在下列函數(shù)中,最小值為2的是( 。
A.y=2x+2-xB.y=sinx+$\frac{1}{sinx}$(0<x<$\frac{π}{2}$)
C.y=x+$\frac{1}{x}$D.y=log3x+$\frac{1}{lo{g}_{3}x}$(1<x<3)

查看答案和解析>>

同步練習冊答案