16.若a,b∈R,且ab>0,則$\frac{a}$+$\frac{a}$的最小值是( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 根據(jù)題意,首先由ab>0可得$\frac{a}$>0且$\frac{a}$>0,進(jìn)而由基本不等式可得$\frac{a}$+$\frac{a}$≥2$\sqrt{\frac{a}•\frac{a}}$,計算可得答案.

解答 解:根據(jù)題意,若a,b∈R,且ab>0,
則$\frac{a}$>0且$\frac{a}$>0,
$\frac{a}$+$\frac{a}$≥2$\sqrt{\frac{a}•\frac{a}}$=2,
即$\frac{a}$+$\frac{a}$的最小值是2;
故選:C.

點評 本題考查基本不等式的性質(zhì),注意首先要滿足基本不等式的使用條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.曲線f(x)=x2+2x+ex在點(0,f(0))處的切線的方程為( 。
A.y=x-1B.y=x+1C.y=3x-1D.y=3x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將函數(shù)f(x)=$\frac{3}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x的圖象向左平移m(m>0)單位后所得的圖象關(guān)于y軸對稱,則m的最小值為$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給出下列3個命題:
①回歸直線$\widehat{y}$=bx+a恒過樣本點的中心($\overline{x}$,$\overline{y}$),且至少過一個樣本點
②設(shè)a∈R,“a>1”是“$\frac{1}{a}$<1”的充要條件
③“存在x0∈R,使得x${\;}_{0}^{2}$+x0+1<0”的否定是“對任意的x∈R,均有x2+x+1<0”
其中真命題的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,直線$\frac{{\sqrt{2}}}{2}x+y=1$經(jīng)過E的右頂點和上頂點.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的右焦點為F,過點G(2,0)作斜率不為0的直線交橢圓E于M,N兩點.設(shè)直線FM和FN的斜率為k1,k2.求證:k1+k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.“遠(yuǎn)望嵬嵬塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾碗燈?”源自明代數(shù)學(xué)家吳敬所著的《九章詳註比纇算法大全》,
(1)通過計算可得尖頭幾碗?
(2)若設(shè)每層燈碗數(shù)構(gòu)成一個數(shù)列{an}(n∈n*),求數(shù)列{n•an}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{1-x}{e^x}$
(1)求函數(shù)f(x)的極值
(2)若x∈[-1,+∞),求函數(shù)f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在銳角三角形△ABC中,a,b,c分別是角A,B,C的對邊,(a+b+c)(a+c-b)=$({2+\sqrt{3}})ac$,則cosA+sinC的取值范圍為(  )
A.$({\frac{3}{2},\sqrt{3}})$B.$({\frac{{\sqrt{3}}}{2},\frac{3}{2}})$C.$({\frac{3}{2},\sqrt{3}}]$D.$({\frac{{\sqrt{3}}}{2},\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60°”時,結(jié)論的否定是三角形的三個內(nèi)角都大于60°.

查看答案和解析>>

同步練習(xí)冊答案