【題目】已知函數(shù)fx,gx)=f+1kRk≠0),則下列關(guān)于函數(shù)yf[gx]+1的零點個數(shù)判斷正確的是(

A.k0時,有2個零點;當k0時,有4個零點

B.k0時,有4個零點;當k0時,有2個零點

C.無論k為何值,均有2個零點

D.無論k為何值,均有4個零點

【答案】B

【解析】

根據(jù)方程的跟和函數(shù)的零點的關(guān)系,將函數(shù)的零點個數(shù)轉(zhuǎn)化為以及的交點,即可求解.

依題意,當x0x時,fx)=﹣1,

函數(shù)yf[gx]+1的零點個數(shù),即為方程f[gx]=﹣1的解的個數(shù),

即為方程gx)=0gx的解的個數(shù),

即為方程或者(舍去)

或者解的個數(shù),

即為0或者或者解的個數(shù),

,因為,所以,

①當k0時,y為頂點為(0,),開口向上的拋物線,yy分別有兩個交點,與y0無交點,

故當k0時,函數(shù)yf[gx]+14個零點;

②當k0時,y為頂點為(0),開口向下的拋物線,yy0有兩個交點,與y無交點,

故當k0時,函數(shù)yf[gx]+12個零點;

綜上,當k0時,有4個零點;當k0時,有2個零點,

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某調(diào)查機構(gòu)為了解人們對某個產(chǎn)品的使用情況是否與性別有關(guān),在網(wǎng)上進行了問卷調(diào)查,在調(diào)查結(jié)果中隨機抽取了份進行統(tǒng)計,得到如下列聯(lián)表:

男性

女性

合計

使用

15

5

20

不使用

10

20

30

合計

25

25

50

1)請根據(jù)調(diào)查結(jié)果你有多大把握認為使用該產(chǎn)品與性別有關(guān);

2)在不使用該產(chǎn)品的人中,按性別用分層抽樣抽取人,再從這人中隨機抽取人參加某項活動,記被抽中參加該項活動的女性人數(shù)為,求的分布列和數(shù)學期望.

附:,

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形的邊長為,,交于點.將菱形沿對角線折起,得到三棱錐,點是棱的中點,

(I)求證:平面⊥平面;

(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】試比較下面概率的大。

1)如果以連續(xù)擲兩次骰子依次得到的點數(shù)mn作為點P的橫、縱坐標,點P在直線的下面包括直線的概率;

2)在正方形,x,,隨機地投擲點P,求點P落在正方形T內(nèi)直線的下面包括直線的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某水果種植基地引進一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近株數(shù)為0,1,2,3,4時每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:

0

1

2

3

4

15

12

11

9

8

(1)求出該種水果每株的產(chǎn)量關(guān)于它“相近”株數(shù)的回歸方程;

(2)有一種植戶準備種植該種水果500株,且每株與它“相近”的株數(shù)都為,計劃收獲后能全部售出,價格為10元,如果收入(收入=產(chǎn)量×價格)不低于25000元,則的最大值是多少?

(3)該種植基地在如圖所示的直角梯形地塊的每個交叉點(直線的交點)處都種了一株該種水果,其中每個小正方形的邊長和直角三角形的直角邊長都為,已知該梯形地塊周邊無其他樹木影響,若從所種的該水果中隨機選取一株,試根據(jù)(1)中的回歸方程,預測它的產(chǎn)量的分布列與數(shù)學期望.

附:回歸方程中斜率和截距的最小二乘法估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,四邊形ACFE為平行四邊形,設(shè)BDAC相交于點G,ABBDAE2,∠EAD=∠EAB

1)證明:平面ACFE⊥平面ABCD;

2)若直線AEBC的夾角為60°,求直線EF與平面BED所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正六棱錐中,已知底邊為2,側(cè)棱與底面所成角為.

1)求該六棱錐的體積

2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,是橢圓上一點,軸,.

1)求橢圓的標準方程;

2)若直線與橢圓交于、兩點,線段的中點為為坐標原點,且,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐PABC中,ACBC,AB2BC,D為線段AB上一點,且AD3DB,PD⊥平面ABC,PA與平面ABC所成的角為45°

1)求證:平面PAB⊥平面PCD;

2)求二面角PACD的平面角的余弦值.

查看答案和解析>>

同步練習冊答案